Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Schlüsselenzym für die Virusvermehrung entdeckt

30.07.2012
Wissenschaftler des TWINCORE stören die Infektionskette des Hepatitis-C-Virus.

Viren sind – im weiteren Sinn – Schmarotzer. Sie klinken sich geschickt in die Abläufe in den Zellen ihres Wirtes ein und missbrauchen sie, um sich zu vervielfältigen.


Figur 1: HCV infizierte Zellen (rot: HCV Core Protein, grün: zelluläre "lipid droplets", blau: Zellkerne, Pfeile: Kolokalisation von Core und lipid droplets).

Wissenschaftler am TWINCORE haben entdeckt, wie Hepatitis-C- und Dengue-Viren die Funktion eines zellulären Enzyms für ihre Vervielfältigung nutzen. Dieses Ergebnis könnte auf verkürztem Weg zu einem neuen Therapieansatz führen, denn verschiedene Labore und auch die Pharmaindustrie testen Wirkstoffe, die genau dieses Enzym blockieren: als Entzündungshemmer.

Das Hepatits-C- und Dengue-Virus gehören zu der Gruppe der behüllten Viren – so wie beispielsweise auch Influenza oder Corona-Viren, zu denen SARS zählt. Behüllte Viren sind von einer Membran aus Fett- und Eiweißmolekülen umgeben, die über komplizierte Mechanismen in den Zellen des Virus-Wirtes zusammengebaut werden. Vor der Freisetzung wickelt sich der Kern des Virus in diese Membran und verlässt dann als reifes, infektiöses Partikel die Wirtszelle. Ist diese Virushülle nicht korrekt zusammengesetzt, stecken die Viren keine weiteren Zellen mehr an und die Infektionskette bricht ab.

„Um Faktoren zu finden, die für die Virusvermehrung und den Zusammenbau neuer Viren wichtig sind, haben wir einen neuen Ansatz gewählt“, sagt Thomas Pietschmann, Leiter des Instituts für Virologie am TWINCORE. „Wir haben zunächst nicht einzelne Faktoren – Eiweißmoleküle – in den Zellen blockiert, sondern ganze zentrale Signalwege.“ Damit stören die Wissenschaftler sozusagen einen ganzen Funkkanal für einzelne Zellaufgaben und können beobachten, was dabei in Zellen geschieht, die mit dem Hepatits-C-Virus infiziert sind. Die Blockade eines Pfades stoppte die Virusvermehrung. Daraufhin begann die Suche nach dem entscheidenden Faktor, der durch diesen Pfad angeschaltet wird und für das Virus wichtig ist. „Wir habendie Zytosolische Phospholipase als das zentrale Enzym identifiziert“, sagt Nicolas Menzel, Wissenschaftlicher Mitarbeiter am Institut für Experimentelle Virologie. „Dieses Enzym spielt eine wichtige Rolle bei Entzündungsreaktionen und am Endoplasmatischen Retikulum (ER) innerhalb der Wirtszelle.“ An diesem ER, einem „Organ“ innerhalb der Zelle, werden zelluläre Eiweiße gebildet – und auch Hepatitis-C-Viren vermehrt. „Wir haben dann die Zytosolische Phospholipase in humanen Zellkulturen blockiert und konnten beobachten, dass Viren, die dann noch produziert wurden, eine deutlich veränderte Zusammensetzung der Virushülle hatten. Gleichzeitig waren diese Viren wesentlich geschwächt und kaum mehr infektiös.“

Da das nicht nur mit dem Hepatits-C-Virus gelang, sondern auch mit dem Dengue-Virus, „hoffen wir, dass dies ein allgemeines Prinzip für behüllte Viren ist, die sich an diesem „Organ“, dem ER, bilden “, sagt Thomas Pietschmann. „Zunächst untersuchen wir jetzt weitere Wirkstoffe, die ebenfalls die Zytosolische Phospholipase angreifen. Darunter sind auch Verbindungen, die die Pharmaindustrie als neuartige Entzündungshemmer testet. Auf diese Weise wollen wir herausfinden, ob die Zytosolische Phospholipase als Ziel für eine antivirale Therapie gegen Hepatitis C und möglicherweise auch andere Viruserkrankungen in Frage kommt.“

Hepatitis-C-Virus

Eine Infektion mit dem Hepatitis C Virus (HCV) ist ein – zweifelhaftes – Privileg von Menschen und Schimpansen. Etwa 170 Millionen Menschen sind chronisch mit dem Virus infiziert, das heißt, sie tragen es dauerhaft in ihren Leberzellen. Und das bleibt in vielen Fällen nicht ohne Folgen für die Leber: Ihr Risiko, eine chronische Entzündung und letztlich Leberkrebs zu bilden, steigt. Deshalb arbeiten Wissenschaftler auf der ganzen Welt an neuen Strategien gegen das Virus.

Ansprechpartner:
Prof. Dr. Thomas Pietschmann
thomas.pietschmann(at)twincore.de
Tel: +49 (0)511-220027-130

Dr. Jo Schilling | idw
Weitere Informationen:
http://www.twincore.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Hefe-Spezies in Braunschweig entdeckt
12.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Urbane Gärten: Wie Agrarschädlinge von Städten profitieren
12.12.2019 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Hefe-Spezies in Braunschweig entdeckt

12.12.2019 | Biowissenschaften Chemie

Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung

12.12.2019 | Medizin Gesundheit

Urbane Gärten: Wie Agrarschädlinge von Städten profitieren

12.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics