Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Puzzleteil in der Architektur des Lebens

20.03.2020

Kieler Forschungsteam untersucht bisher unbekannten Reproduktionsmechanismus des biotechnologisch relevanten Bakteriums Corynebacterium glutamicum

Die Lebenswissenschaften als disziplinübergreifendes Feld haben in den vergangenen Jahrzehnten insbesondere in der Erforschung der molekularen Architektur des Lebens gewaltige Fortschritte gemacht. So sind heute zum Beispiel umfangreiche Details des genetischen Bauplans vieler Lebewesen bekannt.


Das rot markierte Protein ParB in einer Bakterienzelle (l.); mit Hilfe von höchstauflösender Mikroskopie werden ParB-Einzelstrukturen sichtbar; die molekulare Architektur von ParB (r.).

© Prof. Marc Bramkamp


Prof. Marc Bramkamp erforscht mit seinem Team am Beispiel des Bakteriums Corynebacterium glutamicum, wie Mikroorganismen ihre Erbinformationen vervielfältigen.

© Jürgen Haacks, Uni Kiel

Dennoch bleiben etwa in der Zellbiologie auch heute noch zahlreiche Fragen zu grundsätzlichen Lebensprozessen offen. Eine dieser fundamentalen Fragen besteht darin, wie genau eine Zelle und damit letztendlich komplexe Lebewesen aus biochemischen Informationen ihre räumlichen Strukturen ableiten und die damit verbundenen Informationen stabil an die Nachkommen vererben können.

An der Christian-Albrechts-Universität zu Kiel (CAU) beschäftigt sich die Arbeitsgruppe Mikrobielle Biochemie und Zellbiologie um Professor Marc Bramkamp unter anderem mit dieser Frage.

In einer neuen Forschungsarbeit konnten Bramkamp und sein Team am Beispiel des Bakteriums Corynebacterium glutamicum neue Erkenntnisse darüber gewinnen, wie Mikroorganismen ihre Erbinformationen vervielfältigen und so ihr Wachstum und ihre Vermehrung organisieren.

Ihre neue Arbeit veröffentlichten die Kieler Forschenden heute gemeinsam mit internationalen Kolleginnen und Kollegen unter anderem vom Pariser Institut Pasteur im renommierten Wissenschaftsjournal Nature Communications.

Wie aus Biochemie räumliche Strukturen entstehen

Ein relativ einfacher Prozess, an dem sich die Frage der Reproduktion und räumlichen Organisation von Lebewesen untersuchen lässt, ist das Wachstum von Mikroorganismen. Viele Bakterien bilden zum Beispiel eine charakteristische Stäbchenform aus, so auch das in der Studie untersuchte Bakterium Corynebacterium glutamicum.

Um die der Vererbung und dem Wachstum zugrundliegenden Prozesse besser zu verstehen, untersuchten die CAU-Forschenden wie die Chromosomen mit dem bakteriellen Erbgut in den Zellen kompaktiert und während des Zellzyklus des Bakteriums auf die Tochterzellen verteilt werden. Sie verfolgten also Zellen von ihrer Geburt bis hin zur Zellteilung.

Bakterien vermehren sich auf dem Weg der Zellteilung und müssen bei diesem Prozess ihre Erbinformationen vervielfältigen. Die damit verbundenen Abläufe sind bei C. glutamicum und verwandten Arten insgesamt wenig untersucht.

Zur Verteilung der kopierten Erbinformationen nutzt das Bakterium das sogenannte ParB-Protein (von „partitioning“, Deutsch: Aufteilung). Dieses Protein bindet die Chromosomen an einer bestimmten DNA-Sequenz und koppelt diese an die Zellpole, also an beide Enden der stäbchenförmigen Bakterien.

Dabei ist jeweils ein Chromosom an einem Zellpol verknüpft. Anders als lange für Bakterien angenommen, besitzen Corynebakterien also genau wie zum Beispiel die meisten Wirbeltiere einschließlich des Menschen jeweils zwei Kopien jedes Gens.

Die duplizierten Chromosomen werden dann mit Hilfe von ParB und einem Partnerprotein ParA über die bereits existierenden Chromosomen bewegt. „Das bakterielle Chromosom ist daher auch als strukturgebendes Element für die Organisation der Zelle wichtig und nicht nur als Speicher genetischer Information“, erklärt Bramkamp.

„Wir konnten zeigen, dass bei diesem Bakterium die Verdopplung der Chromosomen gewissermaßen an den Zellpolen startet und die neue DNA von dort zur Zellmitte transportiert wird und damit besonders effizient aufgeteilt wird“, so Bramkamp weiter.

Das Chromsom ist ein DNA-Strang, der die Größe einer Bakterienzelle um ein Vielfaches übersteigt. Um die Erbinformation also in der Zelle unterzubringen, müssen sie verpackt und komprimiert werden. Daran sind sogenannte Condensin-Komplexe beteiligt.

Das sind bestimmte Enzymkomplexe, die an der Organisation der Chromosomen mitwirken und durch das ParB-Protein auf die DNA aufgeladen werden. Das Kieler Forschungsteam fand heraus, dass bei C. glutamicum zwei unterschiedliche Condensin-Komplexe vorkommen, sie jedoch nicht beide an der Verpackung der Erbinformationen beteiligt sind.

Stattdessen reguliert ein neuartiges Condensin-System die Vermehrung sogenannter Plasmide in den Bakterienzellen. Plasmide sind genetische Elemente, die als ringförmige DNA außerhalb der Chromosomen in der Bakterienzelle vorkommen.

Plasmide sind wichtig, da sie zum Beispiel am sogenannten horizontalen Gentransfer, etwa dem Austausch von Erbinformationen über mikrobielle Artgrenzen hinweg, beteiligt sind.

Dabei werden zum Beispiel oft Gene für Antibiotikaresistenzen oder sogenannte Virulenzfaktoren verbreitet, also Eigenschaften, die die krankmachende Wirkung eines Bakteriums bestimmen.

Lebensprozesse in hoher Auflösung sichtbar machen

Bramkamp, der im vergangenen Jahr von der Ludwig-Maximilians-Universität in München an das Institut für Allgemeine Mikrobiologie der CAU wechselte, legt bei der Erforschung der Mechanismen der bakteriellen Reproduktion besonderen Wert auf die Entwicklung und den Einsatz innovativer Bildgebungsverfahren.

Bei der Untersuchung der jetzt neu entdeckten Mechanismen setzte das Forschungsteam sogenannte Einzelmolekül-Lokalisations-Mikroskopie ein, also die mikroskopische Sichtbarmachung einzelner Moleküle mit einer Präzision von 20 Nanometern.

„Auf diese Weise konnten wir bei der Organisation des bakteriellen Chromosoms bislang nicht bekannte Nanostrukturen sichtbar machen“, betont Doktorand Giacomo Giacomelli. „Die dabei ablaufenden Prozesse am lebenden Objekt sehen und untersuchen zu können, eröffnet völlig neue Perspektiven für das Verständnis der beteiligten molekularen Mechanismen”, so Giacomelli weiter.

Insgesamt sind die am Beispiel von C. glutamicum gewonnenen Erkenntnisse von hohem wissenschaftlichem Wert, da mit diesem bislang wenig erforschten Bakterium möglichweiser ein neuartiger Modellorganismus zur Untersuchung bakterieller Lebensprozesse zur Verfügung steht. Dies bietet in wirtschaftlicher und medizinischer Hinsicht vielversprechende Potenziale.

So spielt C. glutamicum zum Beispiel in der biotechnologischen Produktion eine wichtige Rolle bei der Herstellung von Aminosäuren. Außerdem ist es eng mit bestimmten Krankheitserregern verwandt, zum Beispiel dem Tuberkulose-Erreger Mycobacterium tuberculosis. In beiden Feldern ist daher ein immer genaueres Verständnis der Lebensprozesse und speziell der Reproduktion des Bakteriums von großer Bedeutung.

Fotos stehen zum Download bereit:

https://www.uni-kiel.de/de/pressemitteilungen/2020/083-bramkamp-naturecomms-port...
Bildunterschrift: Prof. Marc Bramkamp erforscht mit seinem Team am Beispiel des Bakteriums Corynebacterium glutamicum, wie Mikroorganismen ihre Erbinformationen vervielfältigen
© Jürgen Haacks, Uni Kiel

https://www.uni-kiel.de/de/pressemitteilungen/2020/083-bramkamp-naturecomms-comp...
Bildunterschrift: Proteinlokalisation in Einzelzellen von Corynebacterium glutamicum: Das rot markierte Protein ParB in einer Bakterienzelle (links); mit Hilfe von höchstauflösender Mikroskopie werden Einzelstrukturen in den ParB Ansammlungen sichtbar (Mitte); Berechnungen zur Proteindichte zeigen die molekulare Architektur von ParB am Replikationsursprung der Chromosomen (rechts).
© Prof. Marc Bramkamp

https://www.uni-kiel.de/de/pressemitteilungen/2020/083-bramkamp-naturecomms-dapi...
Bildunterschrift: Phasenkontrast Mikroskopie von Corynebacterium glutamicum Zellen bei denen die DNA der Chromosomen mit einem Farbstoff (hellblau) angefärbt sind.
© Prof. Marc Bramkamp

Weitere Informationen:

Institut für Allgemeine Mikrobiologie, CAU Kiel :
https://www.mikrobio.uni-kiel.de/de/institut-fuer-allgemeine-mikrobiologie

Wissenschaftliche Ansprechpartner:

Prof. Marc Bramkamp
Mikrobielle Biochemie und Zellbiologie
Institut für Allgemeine Mikrobiologie, CAU Kiel
Tel.: 0431-880-4341
E-Mail: bramkamp@ifam.uni-kiel.de

Originalpublikation:

Kati Böhm, Giacomo Giacomelli, Andreas Schmidt, Axel Imhof, Romain Koszul, Martial Marbouty and Marc Bramkamp (2020): Chromosome organization by a conserved condensing-ParB system in the actinobacterium Cornyebacterium glutamicum.
Nature Communications Published: 20 March 2020
https://doi.org/10.1038/s41467-020-15238-4

Weitere Informationen:

https://www.mikrobio.uni-kiel.de/de/institut-fuer-allgemeine-mikrobiologie

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Synthese gegen die Stoppuhr: Neuartiges Radiopharmakon zur Diagnostik tumorrelevanter Transportproteine entwickelt
06.04.2020 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Winzige Meeresbewohner als Schlüssel für globale Kreisläufe
06.04.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungsnachrichten

Wenn Ionen an ihrem Käfig rütteln

06.04.2020 | Energie und Elektrotechnik

Virtueller Roboterschwarm auf dem Mars

06.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics