Neues Puzzlestück gefunden: Wie regelt UHRF1 die Gen-Aktivität?

UHRF1 könnte sich als Zielstruktur für medikamentöse Therapien eignen. © Helmholtz Zentrum München

Alle Zellen unseres Körpers haben das gleiche Erbgut, übernehmen aber unterschiedliche Aufgaben, da die Gene in den verschiedenen Zelltypen unterschiedlich abgelesen werden. Diese Steuerung der Gen-Aktivität findet nicht nur auf Ebene der DNA-Sequenz statt.

Eine Vielzahl chemischer Modifizierungen der DNA und der Histone steuert die Aktivität von Genen auf der epigenetischen Ebene. „Histone sind Proteine, die die DNA-Fäden im Zellkern zu den Chromosomen ‚verpacken’. Sie sind aber auch für die Genexpression von Bedeutung“, sagt Prof. Dr. Robert Schneider, Direktor des Instituts für Funktionelle Epigenetik (IFE) des Helmholtz Zentrums München.

Zusammen mit anderen Proteinen bilden DNA-Moleküle und Histone das Chromatin: eine chemische Möglichkeit, Erbinformationen auf geringem Volumen im Zellkern zu verpacken. Diese Regulierungsvorgänge, über die noch recht wenig bekannt ist, bilden die Grundlage der Forschung am IFE.

UHRF1: Ein Molekül steuert Schlüsselschritte bei der DNA-Methylierung

Bisher war bekannt, dass das Protein UHRF1 (Ubiquitin-like, containing PHD and RING finger domains) eine wichtige Rolle bei der Methylierung von DNA spielt. Methylierungen sind chemische Modifikationen am DNA-Molekül ohne Veränderung des genetischen Codes, sprich der Basenabfolge. Sie haben aber Auswirkungen auf die Aktivität der in der Basensequenz codierten Gene. Für gewöhnlich sorgt die Methylierung von DNA-Molekülen für deren Stummschaltung.

UHRF1 steuert die DNA-Methylierung, indem es dafür sorgt, dass ein Enzym, welches Methyl-Gruppen an die DNA knüpft, an neu entstandenes Chromatin bindet. Um diese Aufgabe zu erfüllen, muss UHRF1 zuerst selbst an das neu entstandene Chromatin andocken und im nächsten Schritt ein Ubiquitin-Molekül (ein kleines Protein, das die Eigenschaften anderer Proteine verändert) auf ein Histon-Protein übertragen. Hierfür verwendet UHRF1 unterschiedliche Protein-Domänen, Bereiche mit besonderen Raumstrukturen und Aufgaben im gleichen Molekül.

„Wie das genau funktioniert, war bislang nicht bekannt“, sagt Dr. Till Bartke, stellvertretender Direktor des IFE und Leiter der Studie. Zusammen mit seinem Kollegen Dr. Benjamin Foster (Wissenschaftlicher Mitarbeiter am IFE) hat er verschiedene Verfahren eingesetzt, um diesen Teilschritt zu erforschen*.

„Wir konnten zeigen, dass eine Ubiquitin-ähnliche Domäne (UBL) vorhanden sein muss, um Ubiquitin-Moleküle zu übertragen“, fasst Bartke zusammen: Ein besonderes Strukturelement, welches an Umlagerungen von UHRF1 beteiligt ist, nachdem es an das Chromatin angedockt hat. In Zusammenarbeit mit der Gruppe von Dr. Sebastian Bultmann an der Ludwig-Maximilians Universität München konnten die Forscher zudem zeigen, dass die UBL-Domäne notwendig ist, damit DNA in Zellen methyliert wird.

„Unsere Analyse des enzymatischen Mechanismus von UHRF1 zeigt eine unerwartete Funktion der UBL-Domäne auf und definiert eine neue Rolle für diese Domäne bei der DNA-Methylierung“, fasst der Wissenschaftler zusammen. Da andere Gruppen bei mehreren Tumoren, etwa Lungen- und Darmkrebs, erhöhte Mengen an UHRF1 gefunden hätten, sei das Protein eine denkbare Zielstruktur für künftige Therapien.

Weitere Informationen

* Dazu gehören chemische Vernetzungen der Moleküle, massenspektroskopische Untersuchungen und Einsatz rekombinanter Chromatin-Moleküle, welche mit Methyl-Gruppen modifiziert wurden.

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Das Institut für Funktionelle Epigenetik (IFE) befasst sich mit der epigenetischen Regulation von Genen. Der Fokus liegt dabei auf den sogenannten Histonproteinen, auf denen die DNA aufgewickelt ist und die den Ausschlag darüber geben können, ob ein Gen abgelesen werden kann oder nicht. Zudem erforschen die Wissenschaftler die Zusammenhänge zwischen Volkskrankheiten und den oben genannten Prozessen. Durch neuartige Methoden sind sie in der Lage, Veränderungen dieser Prozesse sogar in einzelnen Zellen nachzuweisen. http://www.helmholtz-muenchen.de/ife

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187 2238 – E-Mail: presse@helmholtz-muenchen.de

Dr. Till Bartke, Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Funktionelle Epigenetik, Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187 1553 – E-Mail: till.bartke@helmholtz-muenchen.de

Foster, B. M. et al. (2018): Critical role of the UBL domain in stimulating the E3 ubiquitin ligase activity of UHRF1 toward chromatin. Molecular Cell, DOI: 10.1016/j.molcel.2018.09.028
https://www.cell.com/molecular-cell/fulltext/S1097-2765(18)30799-8

Media Contact

Sonja Opitz Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer