Neues Protokoll erlaubt Analyse von Stoffwechselprodukten aus fixiertem Gewebe

Ein neues Protokoll für die bildgebende Massenspektrometrie erlaubt die Analyse von Stoffwechselprodukten wie Adenosinmonophosphat aus fixiertem Gewebe, hier im Hintergrund dargestellt. Quelle: Helmholtz Zentrum München

In der biomedizinischen Forschung ist das Arbeiten mit Gewebeproben nicht mehr wegzudenken, denn sie erlauben abseits von Petrischale und Computersimulation einen Blick in die biologische Wirklichkeit, etwa von Patienten. Um das Gewebe für spätere Untersuchungen möglichst im Originalzustand aufzubewahren, wird es in der Regel in Formalin fixiert und in wachsartiges Paraffin eingebettet.

Bisher war man davon ausgegangen, dass in so behandeltem Material eine Analyse von Stoffwechselprodukten (Metaboliten) im Gegensatz zu DNA oder Proteinen aus technischen Gründen kaum möglich ist. Dies konnte ein Wissenschaftlerteam der Abteilung Analytische Pathologie des Helmholtz Zentrums München um Leiter Prof. Dr. Axel Karl Walch nun widerlegen.

Fixiertes Gewebe im großen Maßstab zugänglich

Die Forscherinnen und Forscher entwickelten ein Protokoll, wonach es binnen eines Tages möglich ist, die Metabolitkomposition eines Gewebes mit Hilfe der bildgebenden Massenspektrometrie zu bestimmen und in Gewebeschnitten sichtbar zu machen. Dazu reichen den Autoren zufolge relativ kleine Mengen an Material. „Unsere Methode erlaubt auch die Analyse von kleinsten Biopsien und sogar Gewebe-Microarrays, was sie für die molekulare Forschung und Diagnostik besonders interessant macht“, erklärt Doktorand Achim Buck, gemeinsam mit Alice Ly, Erstautor der Studie.

Um auszuschließen, dass die gemessenen Daten nicht durch den Fixationsprozess verfälscht werden, verglichen die Autoren sie mit Messwerten der gleichen Proben, die aber nicht fixiert, sondern schockgefroren waren. „Ein Großteil der gemessenen Metabolite fand sich in beiden Analysen wieder“, berichtet Achim Buck. „Wir konnten zeigen, dass die Methode verlässlich funktioniert und dabei die aufwändige Logistik und Lagerung von schockgefrorenen Proben umgeht.“

Neben der einfachen Handhabung und der hohen Reproduzierbarkeit ist den Wissenschaftlern zufolge auch die Möglichkeit, mit hohem Probendurchsatz zu arbeiten, ein wichtiger Vorteil der neuen Methode.* Vor allem aber könne man nun die räumliche Verteilung von Molekülen im Gewebe bildhaft und mit großer Präzision studieren. „Das ist sowohl in der Forschung als auch in der klinisch diagnostischen Praxis ein enormer Vorteil“, ordnet Studienleiter Walch die neuen Möglichkeiten ein. „Unser Ziel ist es nun, mit unserem neuen Analyseverfahren zukünftig neue prädiktive, diagnostische und prognostische Marker in Geweben zu identifizieren, sowie Krankheitsprozesse besser zu verstehen.“

Von der Veröffentlichung des Protokolls erhoffen sich die Wissenschaftler auch einen Austausch und eine Weiterentwicklung durch Kollegen, um metabolische Untersuchungen an Archivgeweben voranzutreiben.

Weitere Informationen

Hintergrund:
* Über Gewebe-Mikroarrays, die die Analyse von mehreren hundert Patienten in einer Messung erlauben, können im Hochdurchsatz gewebsbasierte wissenschaftliche und diagnostische Fragestellungen zum Verständnis der Krankheitsentstehung und neuer Therapieoptionen geklärt werden.

Original-Publikation:
Ly, A. & Buck, A. et al. (2016). High Mass Resolution MALDI Mass Spectrometry Imaging of Metabolites from Formalin-Fixed Paraffin Embedded Tissue, Nature Protocols, DOI: nprot.2016.081

Unterstützende Publikation:
Buck, A. & Ly, A. et al. (2015). High-resolution MALDI-FT-ICR MS Imaging for the analysis of metabolites from formalin-fixed paraffin-embedded clinical tissue samples, The Journal of Pathology, doi:10.1002/path.4560

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Die selbstständige Abteilung Analytische Pathologie (AAP) entwickelt wissenschaftlich in Ergänzung zu klinischen und grundlagenorientierten Forschungseinheiten die translationale Forschung von Erkrankungen, die sich in Geweben manifestieren. AAP beschäftigt sich mit der Übersetzung von z.B. In-vitro-Modellen oder Tiermodellen in die Anwendung am Menschen. So verzahnt AAP gemeinsam mit dem Institut für Pathologie (PATH) die grundlagenorientierte Forschung und die diagnostische Anwendung und übersetzt die Erkenntnisse der experimentellen und molekularen Pathologie in Verfahren der Krankheitstypisierung und prädiktiven Diagnostik am Gewebe. http://www.helmholtz-muenchen.de/aap

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187 2238 – Fax: +49 89 3187 3324 – E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner:
Prof. Dr. Axel Karl Walch, Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Abteilung Analytische Pathologie, Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187 2739, E-Mail: axel.walch@helmholtz-muenchen.de

http://www.nature.com/nprot/journal/v11/n8/full/nprot.2016.081.html

Media Contact

Sonja Opitz Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer