Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Prinzip der Proteinbindung entdeckt

22.02.2018

UZH-Forschende haben ein bisher unerkanntes Prinzip entdeckt, wie Eiweisse miteinander interagieren und sich Zellen organisieren. Zwei Proteine ohne jegliche Struktur bilden durch ihre entgegengesetzte Ladung einen enorm fest bindenden Komplex. Normalerweise binden zwei Proteine, indem Bereiche ihrer dreidimensionalen Form exakt zueinander passen.

Proteine zählen zu den wichtigsten Biomolekülen und sind hauptverantwortlich für die Kommunikation zwischen und innerhalb von Zellen. Damit zwei Eiweisse aneinander binden können, müssen bestimmte Bereiche ihrer räumlichen Struktur exakt zueinander passen – so wie ein Schlüssel ins Schloss passt.


Einzelmolekül-Fluoreszenzspektroskopie macht Bindungsprinzip von unstrukturierten Proteinen sichtbar.

Christoph Schumacher, dunkelweiss

Die Proteinstruktur ist enorm wichtig, damit ein Eiweiss funktioniert und in den Zellen die gewünschte Reaktion ausgelöst wird. Nun haben Wissenschaftler der Universität Zürich in Zusammenarbeit mit Forschenden aus Dänemark und der USA herausgefunden, dass auch unstrukturierte Proteine enorm fest binden können.

Wie gekochte Nudeln im Salzwasser

Eines dieser Proteine ist Histon H1, das für die Verpackung der DNA in Form von Chromosomen zuständig ist. Sein Bindungspartner, Prothymosin α, agiert als eine Art Shuttle, der das Histon auf der DNA deponiert bzw. wieder davon entfernt. Dieser Prozess bestimmt, ob die Gene auf einer bestimmten DNA-Region abgelesen werden können oder nicht. Beide Proteine sind bei einer Vielzahl von Regulationsvorgängen im Körper beteiligt wie der Zellteilung und -vermehrung.

Sie spielen daher auch bei vielen Krankheiten eine Rolle, z.B. bei Krebs. Ben Schuler, Professor am Biochemischen Institut und Leiter der in Nature publizierten Forschungsarbeit, erklärt: «Interessant an diesen zwei Proteinen ist, dass sie keinerlei Struktur aufweisen – ähnlich wie gekochte Nudeln, die im Salzwasser schwimmen». Wie solch ungeordnete Proteine gemäss dem Schlüssel-Schloss-Prinzip miteinander interagieren, stellte die Forschenden vor ein Rätsel.

Ultrafeste Bindung trotz fehlender Struktur

Erstaunlich ist, dass die beiden Proteine um ein Vielfaches fester aneinander binden verglichen mit der durchschnittlichen Bindungsstärke von Eiweissen. Mit Hilfe von Einzelmolekül-Fluoreszenz- und Kernresonanz-Spektroskopie ermittelte das Forschungsteam die räumliche Anordnung der beiden Proteine. Isoliert betrachtet zeigen sich ausgedehnte unstrukturierte Proteinketten.

Ihre Dimension wird kompakter, sobald die beiden Bindungspartner aufeinandertreffen und einen Komplex bilden. Verantwortlich für die starke Bindung ist die elektrostatische Anziehung, da Histon H1 stark positiv und Prothymosin α stark negativ geladen ist. Noch überraschender war die Entdeckung, dass auch der Komplex gänzlich unstrukturiert ist, wie mehrere Analysen übereinstimmend ergeben haben.

Strukturloser, aber hochdynamischer Komplex

Um zu untersuchen, wie der Proteinkomplex aussieht, versahen die Wissenschaftler beide Proteine mit Fluoreszenzmarkern, die sie an ausgewählten Positionen auf den Eiweissen anbrachten. Mit Hilfe dieses molekularen Massstabs sowie Computersimulationen ergab sich folgendes Bild: Histon H1 interagiert mit Prothymosin α bevorzugt in seiner Mitte, wo sich die grösste Ladungsdichte befindet. Zudem zeigte sich, dass sich die Proteine hochdynamisch verhalten: Im Komplex verändern sie ihre räumliche Anordnung extrem schnell – im Bereich von ca. 100 Nanosekunden.

Neues Bindungsprinzip vermutlich weitverbreitet

Das von den UZH-Forschenden entdeckte Bindungsverhalten ist vermutlich weitverbreitet: In Lebewesen befinden sich zahlreiche Eiweisse, die über zusammenhängende hochgeladene Proteinsequenzen verfügen und möglicherweise solche Komplexe bilden können. Allein im menschlichen Körper existieren mehrere Hundert solcher Proteine. «Die Bindung von ungeordneten hochgeladenen Proteinen dürfte ein fundamentales Prinzip dafür sein, wie Zellen funktionieren und sich organisieren», folgert Ben Schuler. Um diesem neuen Bindungsprinzip Rechnung zu tragen, so der Biophysiker, müssten zukünftig die Lehrbücher revidiert werden. Relevant ist diese Entdeckung auch für die Entwicklung neuer Therapien, da unstrukturierte Eiweisse für klassische Medikamente, die an spezifische Strukturen auf der Proteinoberfläche binden, weitgehend unempfänglich sind.

Literatur:
Alessandro Borgia, Madeleine B. Borgia, Katrine Bugge, Vera M. Kissling, Pétur O. Heidarsson, Catarina B. Fernandes, Andrea Sottini, Andrea Soranno, Karin J. Buholzer, Daniel Nettels, Birthe B. Kragelund, Robert B. Best, Benjamin Schuler. Extreme disorder in an ultra-high-affinity protein complex. Nature. 21 February 2018. DOI: 10.1038/nature25762

Kontakt:
Prof. Dr. Ben Schuler
Biochemisches Institut
Universität Zürich
Tel. +41 44 635 55 35
E-Mail: schuler@bioc.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2018/neue-Proteininteraktion.html

Kurt Bodenmüller | Universität Zürich

Weitere Berichte zu: Eiweisse Fluoreszenzmarkern Histon Nanosekunden Prinzip Proteine Salzwasser Zellen dna protein complex

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wenn Hefen miteinander reden
16.08.2019 | Technische Universität Dresden

nachricht Neue Überlebensstrategie der Pneumokokken im Zentralnervensystem identifiziert
16.08.2019 | Universität Greifswald

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Crispr-Methode revolutioniert

Forschende der ETH Zürich entwickelten die bekannte Crispr/Cas-Methode weiter. Es ist nun erstmals möglich, Dutzende, wenn nicht Hunderte von Genen in einer Zelle gleichzeitig zu verändern.

Crispr/Cas ist in aller Munde. Mit dieser biotechnologischen Methode lassen sich in Zellen verhältnismässig einfach und schnell einzelne Gene präzise...

Im Focus: Wie schwingen Atome in Graphen-Nanostrukturen?

Innovative neue Technik verschiebt die Grenzen der Nanospektrometrie für Materialdesign

Um das Verhalten von modernen Materialien wie Graphen zu verstehen und für Bauelemente der Nano-, Opto- und Quantentechnologie zu optimieren, ist es...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gedanken rasen zum Erfolg: CYBATHLON BCI Series 2019

16.08.2019 | Veranstaltungen

Impfen – Kleiner Piks mit großer Wirkung

15.08.2019 | Veranstaltungen

Internationale Tagung zur Katalyseforschung in Aachen

14.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

16.08.2019 | Physik Astronomie

Solarflugzeug icaré testet elektrische Flächenendantriebe

16.08.2019 | Energie und Elektrotechnik

Neue Überlebensstrategie der Pneumokokken im Zentralnervensystem identifiziert

16.08.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics