Neues Muster für Hochleistungs-Katalysatoren entdeckt

An illustration of an isolated-atom alloy Nature Chemistry

Um häufig verwendete Chemikalien – wie Kraftstoffe, Kunststoffe und Medikamente – herzustellen, ist die chemische Industrie auf Hochleistungs-Katalysatoren angewiesen. Einige Stoffe können nicht effizient hergestellt werden, da die hierfür benötigten Katalysatoren noch nicht existieren. Daher zielt ein Großteil der Forschung darauf ab, neue Katalysatoren zu entwickeln.

Wir kürzlich in der Fachzeitschrift Nature Chemistry berichtet wurde, entdeckten Greiner, Jones und Co. bei sogenannten Metall-Legierungen ein Phänomen, das neue Formen von Hochleistungs-Katalysatoren hervorbringen könnte. Das Forscherteam fand folgendes heraus:

Wenn man eine sehr kleine Menge eines Metalls zu einem anderen hinzufügt, verändern sich sowohl die Eigenschaften des beigemischten Elements drastisch als auch seine Interaktion mit Molekülen. Dieses Ergebnis ist besonders interessant für die chemische Industrie, wo die Effizienz der chemischen Produktion oft davon abhängt, wie Moleküle mit Metallkatalysatoren interagieren.

Das Team fand heraus, dass eine verdünnte Mischung aus Kupfer und Silber zu bestimmten Eigenschaften führt, die freien isolierten Atomen ähneln.

Die Natur verwendet isolierte Metallatome in biologischen Katalysatoren, den sogenannten Enzymen. Diese fein abgestimmten Katalysatoren sind bekannt für ihre beispiellose katalytische Effizienz. Industriekatalysatoren müssen sich dieses Phänomen zu nutzen machen, da sie unter viel härteren Bedingungen arbeiten müssen, als biologische Systeme.

Die industrielle Katalyse muss sich auf weniger effiziente anorganische Materialien in Form von makroskopischen Partikeln stützen. Durch die Nutzung der Eigenschaften isolierter Atome ist es möglich, dass katalytische Effizienz der industriellen Katalysatoren mit biologischen Systemen konkurrieren können.

Jones und Greiner nutzten das neu entwickelte Konzept der „Einatom-Legierungen“, bei denen das beigemischte Element keine Bindungen zu anderen Elementen bildet. Mit solchen Materialien zeigten sie experimentell, dass bestimmte Einzelatomlegierungen Eigenschaften aufweisen, die isolierten Ionen ähneln.

Ebenso bewiesen sie anhand theoretischer Berechnungen, dass auch andere Metallkombinationen zu diesem Verhalten führen müssten. Diese stellen eine Kategorie von bisher unerforschten Materialklassen dar, deren katalytische Eigenschaften justiert werden können. Diese Ergebnisse könnten ein neues Exempel für die Entwicklung neuartiger Hochleistungs-Katalysatoren statuieren.

Dr. Mark Greiner
Max-Planck-Institut für chemische Energieumwandlung
Telefon: +49 (0)-208-306-3686
E-Mail: Mark.Greiner@cec.mpg.de

Dr. Travis Jones
Fritz-Haber Institute of the Max-Planck Society
Phone: +49 (0)-30-8413-4421
E-Mail: trjones@fhi-berlin.mpg.de

https://doi.org/10.1038/s41557-018-0125-5

https://doi.org/10.1038/s41557-018-0143-3
http://www.cec.mpg.de

Media Contact

Christin Ernst M.A. Max-Planck-Institut für Chemische Energiekonversion

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer