Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Wirkungsmechanismus des Pflanzenhormons Auxin nachgewiesen

26.06.2018

Das Hormon Auxin ist für die Entwicklung von Pflanzen essentiell. Es steuert eine Vielzahl von Prozessen, von der Embryonalentwicklung im Samen bis zur Verzweigung der wachsenden Pflanze. Bislang glaubte man, dass sein Signalmechanismus hauptsächlich im Zellkern wirkt und ausschließlich über ein Regulieren der Gentranskription funktioniert. WissenschaftlerInnen um Jiří Friml vom Institute of Science and Technology Austria (IST Austria) haben nun aber bewiesen, dass ein anderer Wirkmechanismus existiert und dass die Zellen in den Wurzeln auch unmittelbar auf Auxin reagieren können. Diese Wirkungsweise ermöglicht eine schnelle Richtungsanpassung des Wurzelwachstums.

Wenn der Samen einer Pflanze keimt, muss die Wurzel schnell die Richtung der Schwerkraft erkennen, sich entsprechend biegen und nach unten wachsen, um festen Halt, Wasser und Nährstoffe zu finden. Eine solche Biegung wird erreicht, indem sich das Wachstum der Zellen auf einer Seite der Wurzel fortsetzt, während es auf der anderen Seite gehemmt wird.


Eine Wurzel die von dem Forscherteam beim Wachsen beobachtet wurde. Die Farben kommen durch einen fluoreszierenden Auxinindikator zustande. Rot zeigt große Mengen von Auxin, grün geringe.

Matouš Glanc

Diese Hemmung wird bekanntermaßen durch das Hormon Auxin ausgelöst und erfolgt sehr schnell, die genauen Reaktionszeiten waren aber schwierig zu messen. Mit einem innovativen Experimentaufbau konnten die ForscherInnen nun herausfinden, wie schnell genau die Wurzeln auf Änderungen der Auxinkonzentration reagieren. Sie fanden, dass die Anpassung der Wachstumsrate extrem schnell erfolgt ̶̶ viel zu schnell, um durch den Mechanismus der Gentranskription erklärt zu werden. Sie folgern, dass es einen entsprechend schnellen Wahrnehmungsmechanismus geben muss.

Neue Verzweigung im altbekannten Weg

Der neue Mechanismus ist jedoch nicht völlig unbekannt. Komponenten des gut untersuchten Signalweges, der TIR1-Rezeptor, werden für die neue Wirkungsweise benötigt. "Wir haben mit unserem Experiment bewiesen, dass die Signalübertragung tatsächlich nicht über Transkription funktioniert, aber wir haben auch gesehen, dass Komponenten des ursprünglichen Transkriptionssignalweges benötigt werden", erklärt Jiří Friml, Professor am IST Austria und Leiter der Forschungsgruppe. "Dies bedeutet, dass wir es nicht mit einem völlig neuen Weg, sondern mit einem neuen Zweig des kanonischen Weges zu tun haben", fügt er hinzu.

Ein gekipptes Mikroskop und flüssigkeitsgefüllte Mikrokanäle

Für ihre Studie nutzte das Team eine Technik, die in derselben Forschungsgruppe entwickelt und im Vorjahr bereits dazu genutzt worden war, ein atemberaubendes Video von wachsenden Wurzeln zu produzieren, das zum Sieger des "Nikon Small World in Motion Award" gekürt wurde: ein gekipptes Mikroskop. Dieses ermöglicht es, die Wurzeln in ihrer natürlichen Orientierung zu beobachten. Die Messung der Reaktionszeit erforderte jedoch noch eine Weiterentwicklung der Technik: Die ForscherInnen mussten in der Lage sein, die Lösung, in der die Wurzeln wachsen, schnell zu verändern.

"Normalerweise würde man das Auxin auftragen und dann die Probe in das Mikroskop einlegen, doch dabei verliert man wertvolle Sekunden oder sogar Minuten. Aber genau diese ersten Minuten sind für diese Studie essenziell", erklärt Erstautor der Studie Matyáš Fendrych, ehemaliger Postdoc in der Gruppe von Jiri Friml und jetzt Assistenzprofessor an der Karls-Universität in Prag. Die Lösung, die das Team fand, bestand darin, die Wurzeln in mikroskopisch kleinen Kanälen wachsen zu lassen, die mit der gewünschten Flüssigkeit gefüllt waren. "Dadurch konnten wir die Auxinkonzentration ändern und sofort die Reaktion der Wurzel messen", fügt er hinzu.

Originalpublikation:

Matyáš Fendrych, et al: “Rapid and reversible root growth inhibition by TIR1 auxin signaling”, Nature Plant, DOI: 10.1038/s41477-018-0190-1

Über das IST Austria
Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Computerwissenschaften. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschaftler und vormals Professor an der University of California in Berkeley, USA, und der EPFL in Lausanne, Schweiz. www.ist.ac.at

Weitere Informationen:

http://ist.ac.at/research/research-groups/friml-group/ Forschungsgruppe von Jiří Friml

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das genetische Geheimnis des Nachtsehens
25.02.2020 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Muskelschwund bei Krebs: Botenstoff hilft beim Muskelaufbau
25.02.2020 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Krankheiten ohne Medikamente heilen

Fraunhofer-Forschende wollen mit Mikroimplantaten Nervenzellen gezielt elektrisch stimulieren und damit chronische Leiden wie Asthma, Diabetes oder Parkinson behandeln. Was diese Therapieform so besonders macht und welche Herausforderungen die Forscher noch lösen müssen.

Laut einer Studie des Robert-Koch-Instituts ist jede vierte Frau von Harninkontinenz betroffen. Diese Form der Blasenschwäche wurde bislang durch ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Plasmonen im atomaren Flachland

25.02.2020 | Informationstechnologie

Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

25.02.2020 | Informationstechnologie

Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

25.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics