Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Signalweg für das mTor-abhängige Zellwachstum entdeckt

27.08.2019

Die Aktivierung des mTor-Komplexes 1 in der Zelle ist zentral für viele lebenswichtige Vorgänge im Körper, z.B. für das Zellwachstum und den Stoffwechsel. Ist dieser Signalweg jedoch überaktiv, können Krankheiten wie diabetische Insulinresistenz oder Krebs resultieren. Ein Team um den Forscher Volker Haucke (Leibniz-Forschungsinstitut für Molekulare Pharmakologie und Freie Universität Berlin) hat herausgefunden, wie eine bestimmte Lipid-Kinase reguliert wird, die entscheidend für die Inaktivierung des mTor-Komplexes 1 ist und damit einen neuen Angriffspunkt zur Behandlung von Diabetes und Krebs darstellt. Die Ergebnisse sind soeben in der Fachzeitschrift Nature Cell Biology erschienen.

Signalwege in Körperzellen sind enorm komplex: Damit ein bestimmter Mechanismus ausgelöst wird, müssen mehrere „Schalter“ in einer festgelegten Reihenfolge „umgelegt“ werden. Diese „Schalter“ zu finden, kann jedoch knifflig sein, weil an der zellulären Signalübermittlung zahlreiche Substanzen und Stoffkomplexe beteiligt sind, deren Rolle nicht immer einfach zu identifizieren ist.


Links: Protein-Kinase N (PKN) ist aktiv und inhibitiert PI3KC2ß (grün eingefärbt). Rechts: PKN fehlt. Das führt dazu, dass PI3KC2ß die Lokalisation in der Zelle ändert und aktiv ist.

Bild: Alexander Wallroth, FMP

So war lange unbekannt, wie der mTor-Komplex 1 in der Zelle deaktiviert werden kann. Diesen „Schalter“ hatten Forschende des FMP bereits 2017 identifizieren können: Eine bestimmte Lipid-Kinase (PI3KC2ß) fungiert als natürliche Bremse für das Protein mTor und sorgt dafür, dass der mTor-Komplex 1 abgeschaltet wird, etwa wenn bestimmte hormonelle Signale wie Insulin ausbleiben.

Alexander Wallroth aus der Arbeitsgruppe von Volker Haucke hat nun genauer untersucht, wie diese Lipid-Kinase reguliert wird. „Wir haben die Lipidkinase auf verschiedene Weise manipuliert und uns angeschaut, welche Effekte das auf die Aktivität von mTOR und auf das Zellwachstum hat“, so der Biologe.

Dabei fanden die Forschenden einen Mechanismus, wie die Lipid-Kinase PI3KC2ß inaktiviert wird. Eine wichtige Rolle spielt dabei eine weitere Kinase, die Protein-Kinase N (PKN). Sie hemmt die Lipid-Kinase PI3KC2ß und sorgt dadurch indirekt für die Aktivierung von mTOR. Die Proteinkinase N wird über Wachstumsfaktoren reguliert:

Wachstumsfaktoren stimulieren an der Zellmembran den mTor-Komplex 2, den zweiten Protein-Komplex, in dem mTor in der Zelle vorliegt. Dieser wiederum aktiviert die PKN, die ihrerseits die Lipid-Kinase deaktiviert.

„Damit haben wir zwei weitere Komponenten gefunden, die pharmaklogisch angegriffen werden könnten“, erklärt Alexander Wallroth. Schafft man es nämlich, PKN zu hemmen, wird die Lipid-Kinase PI3KC2ß aktiviert und schlussendlich mTOR-abhängiges Zellwachstum unterbunden. Wird der Signalweg über Wachstumsfaktoren, den mTor-Komplex 2 und, schließlich, PKN hingegen aktiviert, bleibt die Lipid-Kinase inaktiv und der mTOR-Komplex 1 kann das Zellwachstum befördern.

Inhibitoren, die PKN hemmen könnten, kennt man bereits. Diese sind allerdings nicht sehr spezifisch und blockieren auch viele andere lebenswichtige Vorgänge in der Zelle, so dass sie im lebenden Gewebe derzeit noch nicht eingesetzt werden können.„Interessant an unseren Ergebnissen ist insbesondere, dass wir einen zellbiologischen Signalweg gefunden haben, der die mTor-Komplexe 1 und 2 miteinander verbindet. Schaltet man z.B. 2 aus, wirkt sich das auch auf 1 aus“, sagt Alexander Wallroth.

So konnten die Forschenden in der vorangegangenen Arbeit zeigen, dass die Lipid-Kinase PI3KC2ß direkt auf den mTor-Komplex 1 einwirkt, wenn sie aktiviert ist. Wird nun durch mTor-Komplex 2 die PKN aktiviert und damit die Lipid-Kinase deaktiviert, wirkt sich das auch auf den mTor-Komplex 1 aus. Über den mTor-Komplex 2 war im Verhältnis zu Komplex 1 bisher weniger bekannt. Die vorliegenden Ergebnisse zeigen nun, dass mTOR Komplex 2 die Aktivität des wichtigen Komplex 1 mitsteuert.

„Das gibt weiteren Forschungen zu medizinischen Eingriffsmöglichkeiten bei verschiedenen Krankheiten wie Insulinresistenz oder Krebs neuen Spielraum“, betont Alexander Wallroth.

Bildunterschrift: Links: Protein-Kinase N (PKN) ist aktiv und inhibitiert PI3KC2ß (grün eingefärbt). Rechts: PKN fehlt. Das führt dazu, dass PI3KC2ß die Lokalisation in der Zelle ändert und aktiv ist. Bild: Alexander Wallroth, FMP

Wissenschaftliche Ansprechpartner:

Professor Dr. Volker Haucke
Professor für Molekulare Pharmakologie an der Freien Universität Berlin
Mitglied im Exzellenzcluster NeuroCure

Direktor am Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Robert-Rössle-Str.1013125 Berlin,
Campus Berlin-Buch
E-Mail: haucke@fmp-berlin.de
www.leibniz-fmp.de/haucke

Originalpublikation:

Marat, A.L., Wallroth, A., Lo, W., Müller, R., Norata, G.D., Falsaca, M., Schultz, C., Haucke, V. (2017) mTORC1 activity repression by late endosomal phosphatidylinositol 3,4 bisphosphate. Science, Ausgabe vom 2. Juni 2017

Wallroth, A., Koch, P. A., Marat, A. L., Krause, E., Haucke, V. (2019). Protein kinase N controls a lysosomal lipid switch to facilitate nutrient signalling via mTORC1. Nature Cell Biology, Ausgabe September 2019

Weitere Informationen:

http://www.leibniz-fmp.de/de/press-media/filmportraits-2017/filmportraits-2017-v...
http://www.leibniz-fmp.de/haucke
https://www.leibniz-fmp.de/de/press-media/press-releases/press-releases-single-v...

Silke Oßwald | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 3D-Landkarten der Genaktivität
20.11.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Einblick in die dunkle Materie des Genoms
20.11.2019 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics