Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Regulator der Immunabwehr identifiziert

05.11.2012
Für die erworbene, erlernte Immunantwort sind MHC-II-Moleküle, die sich auf der Oberfläche von Immunzellen befinden, von zentraler Bedeutung.

Sie helfen, zwischen „gut“ und „böse“ zu unterscheiden und präsentieren Bruchstücke potentieller Erreger, damit diese erkannt und vom Körper entsprechende Abwehrmaßnahmen eingeleitet werden können.


Modell für die Regulation von MHC-II-Genen an PML-Kernkörperchen (PML body), die möglicherweise bei der Immunabwehr eine Rolle spielen. (A) In menschlichen Zellen ist der MHC-II-Genlokus (rote Signale) an einem der PML-Kernkörperchen (grüne Signale) positioniert; Abbildung (B) gibt einen Ausschnitt dieser Positionierung wieder. Abbildung (C) zeigt im Modell wie CIITA, der Hauptregulator für die Transkription von MHC-II-mRNAs durch eine feste Bindung an PML-Kernkörperchen stabilisiert wird. (rote Boxen: MHC-II-Gene; grüne Pfeile: Transkription der MHC-II-mRNAs)

Grafik: K. Wagner / FLI; Foto: www.panthermedia.de

Forscher des Leibniz-Instituts für Altersforschung - Fritz-Lipmann-Institut (FLI) in Jena identifizierten nun einen Mechanismus, wie die Synthese (Transkription) von MHC-II-kodierenden RNAs an speziellen Strukturen im Zellkern, den PML-Kernkörperchen, reguliert wird. J Cell Biol. 2012, 199(1), 49-63.

Unser Immunsystem besteht aus zwei wichtigen Komponenten: der angeborenen, unspezifischen und der erworbenen (erregerspezifischen) Immunabwehr. Ihr perfektes Zusammenspiel schützt uns in der Regel sehr gut vor Krankheitserregern. Damit der Körper schnell auf eine Vielzahl extrem anpassungsfähiger Erreger reagieren kann, ist unsere Immunabwehr auf der Ebene der Gene mit einer hohen Variabilität ausgestattet. Hier handelt es sich um eine Gruppe von Genen (Gencluster) auf unserem Chromosom 6, die u.a. für die Gewebeverträglichkeit (Histokompatibilität) bei Transplantationen und die immunologische Individualität wichtig ist; der „major histocompatibility complex“ (MHC).
Die Genprodukte, MHC-Proteinkomplexe der Klasse I und II, regulieren immunologische Vorgänge und sitzen auf der Zelloberfläche. Sie kennzeichnen die Zellen als zum Körper gehörig und tragen eine Art Vertiefung, um kleinere Bruchstücke unerwünschter Eindringlinge, z.B. ein Stück der Außenhülle eines Bakteriums, zu präsentieren (Antigenpräsentation). Sie helfen damit dem Immunsystem, zwischen fremd und eigen zu unterscheiden und stellen darüber hinaus sicher, dass weitere Zellen des Immunsystems auf den Krankheitserreger aufmerksam und effiziente Abwehrmaßnahmen vom Körper eingeleitet werden. Für die erworbene Immunantwort sind insbesondere die MHC-II-Moleküle auf der Oberfläche von Immunzellen von zentraler Bedeutung.

Die Umsetzung von genetischer Information in Proteine (Transkription und Translation) erfolgt über mRNAs (Boten-RNAs) als Informationsüberträger. Es ist bekannt, dass die Synthese der mRNAs, die für MHC-II-Moleküle kodieren, an den sogenannten PML-Kernkörperchen stattfindet; einer bestimmten Sorte einer Familie unterschiedlicher Kernkörperchen in menschlichen Zellkernen. Über deren Funktion herrscht aber Unklarheit. Forscher des Leibniz-Instituts für Altersforschung - Fritz-Lipmann-Institut (FLI) in Jena untersuchten nun die biologische Bedeutung der Positionierung von MHC-II-Genen an PML-Kernkörperchen. „Für unsere Untersuchungen verwendeten wir eine Kombination aus unterschiedlichen biochemischen, molekularbiologischen und Lebendzellmikroskopie-Methoden“, berichtet Dr. Peter Hemmerich vom FLI. „Wir beobachteten, dass die künstlich hervorgerufene Eliminierung der PML-Kernkörperchen in Zellkulturzellen nach Stimulation, z.B. durch Interferon-Gabe, zu einer deutlich verminderten Synthese von MHC-II-Molekülen führt“.

Das Protein CIITA ist der Hauptregulator für die Transkription von MHC-II-Genen (Transkription = Synthese eines neuen RNA-Strangs von einem spezifischen DNA-Abschnitt). Da die Syntheserate von MHC-II-mRNAs direkt proportional zur Menge an vorhandenen CIITA-Molekülen im Zellkern ist, vermutete die Forschergruppe einen direkten Zusammenhang zwischen CIITA und den PML-Kernkörperchen. „Wir konnten nachweisen, dass PML-Kernkörperchen in der Lage sind, CIITA zu stabilisieren, indem sie dieses Protein vor dem proteolytischen Abbau im Zellkern schützen“. „Diesen direkten Zusammenhang zwischen der Menge an MHC-II, CIITA und PML-Kernkörperchen kannte man so vorher nicht“, so Hemmerich weiter. „In den Lebendzell-Experimenten konnten wir dann auch nachweisen, dass sich ein stabiler Komplex zwischen CIITA und dem Protein PML-II an den Kernkörperchen bildet“. Dieser gebildete Komplex sorgt wahrscheinlich für den Schutz von CIITA vor dem proteolytischen Abbau.

„Aus unseren Beobachtungen ergibt sich daher die Hypothese, dass PML-Kernkörperchen eine funktionelle Rolle bei der Aktivierung des Immunsystems spielen und somit - ebenso wie die MHC-II-Moleküle - wichtig für unsere Immunabwehr sind“, unterstreichen die Jenaer Forscher. Die neuen Beobachtungen wurden während einer „simulierten“ Immunantwort durch die Zugabe von Interferon gemacht. Daher müsste als nächstes aufgeklärt werden, ob PML-Kernkörperchen auch bei einer „echten“ Immunreaktion, z.B. gegen Bakterien, beteiligt sind.

Kontakt:

Dr. Kerstin Wagner
Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI)
Beutenbergstr. 11, 07745 Jena
Tel.: 03641-656378, Fax: 03641-656351, E-Mail: presse@fli-leibniz.de

Originalpublikation:

Ulbricht T, Alzrigat M, Horch A, Reuter N, von Mikecz A, Steimle V, Schmitt E, Krämer OH, Stamminger T, Hemmerich P. PML promotes MHC class II gene expression by stabilizing the class II transactivator. J Cell Biol. 2012, 199(1), 49-63. doi: 10.1083/jcb.201112015.

Hintergrundinfo

Als Proteolyse (von griechisch lysis, „Auflösung“) bezeichnet man den biochemischen Abbau von Proteinen.
MHC steht für "major histocompatibility complex" bzw. Haupthistokompatibilitätskomplex (auch: Hauptgewebeverträglichkeitskomplex). Der MHC auf dem menschlichen Chromosom 6 umfasst eine große Zahl von Genen, deren Proteinprodukte für die Immunerkennung, die Gewebeverträglichkeit bei Transplantationen und die immunologische Individualität wichtig sind. MHC-Proteinkomplexe wirken als Oberflächenmoleküle auf jeder Körperzelle, um eine immunologische Unterscheidung zwischen eigenen und fremden Proteinen zu bewerkstelligen. Die MHC-Klasse-I- und MHC-Klasse-II-Moleküle spielen für die Funktion des Immunsystems eine zentrale Rolle. Die Synthese von MHC-Klasse-II-kodierenden mRNAS steht unter der Kontrolle des Transkriptionsfaktors CIITA ("class II transactivator").

PML ist die Abkürzung für "promyelozytische Leukämie". Im Zusammenhang mit dieser Form der Leukämie wurde das PML-Protein zum ersten Mal beschrieben. In diesen Leukämiezellen sind die Gene für PML und den Retinsäure-Rezeptor-Alpha (RARa) durch eine Chromosomen-Translokation fusioniert. Die pathologischen Fusionsproteine (PML-RARa bzw. RARa-PML) bewirken einen Differenzierungsblock der Myelozyten (Vorläuferzellen der weißen Blutkörperchen). Das PML-Protein ist in der nicht-pathologischen Situation der Grundbaustein der sogenannten PML-Kernkörperchen. Die Funktion von PML-Kernkörperchen ist weitgehend unbekannt.

Das Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI) in Jena ist das erste deutsche Forschungsinstitut, das sich seit 2004 der biomedizinischen Altersforschung widmet. Über 330 Mitarbeiter aus 25 Nationen forschen zu molekularen Mechanismen von Alterungsprozessen und altersbedingten Krankheiten. Näheres unter http://www.fli-leibniz.de.

Die Leibniz-Gemeinschaft (WGL) verbindet 86 selbständige Forschungseinrichtungen. Deren Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute bearbeiten gesellschaftlich, ökonomisch und ökologisch relevante Fragestellungen. Sie betreiben erkenntnis- und anwendungsorientierte Grundlagenforschung. Sie unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer in Richtung Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Institute pflegen intensive Kooperationen mit den Hochschulen - u.a. in Form der Wissenschaftscampi -, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem maßstabsetzenden transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 16.500 Personen, darunter 7.700 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei 1,4 Milliarden Euro. Näheres unter http://www.leibniz-gemeinschaft.de.

Dr. Kerstin Wagner | idw
Weitere Informationen:
http://www.fli-leibniz.de
http://www.leibniz-gemeinschaft.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auflösen von Proteinstau am Eingang von Mitochondrien
23.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fossiles Zooplankton zeigt, dass marine Ökosysteme im Anthropozän angekommen sind
23.05.2019 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Im Focus: Impfen über die Haut – Gezielter Wirkstofftransport mit Hilfe von Nanopartikeln

Forschenden am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist es gelungen Nanopartikel so weiterzuentwickeln, dass sie von speziellen Zellen der menschlichen Haut aufgenommen werden können. Diese sogenannten Langerhans Zellen koordinieren die Immunantwort und alarmieren den Körper, wenn Erreger oder Tumore im Organismus auftreten. Mit dieser neuen Technologieplattform könnten nun gezielt Wirkstoffe, zum Beispiel Impfstoffe oder Medikamente, in Langerhans Zellen eingebracht werden, um eine kontrollierte Immunantwort zu erreichen.

Die Haut ist ein besonders attraktiver Ort für die Applikation vieler Medikamente, die das Immunsystem beeinflussen. Die geeigneten Zielzellen liegen in der...

Im Focus: Chaperone halten das Tumorsuppressor-Protein p53 in Schach: Komplexer Regelkreis schützt vor Krebs

Über Leben und Tod einer Zelle entscheidet das Anti-Tumor-Protein p53: Erkennt es Schäden im Erbgut, treibt es die Zelle in den Selbstmord. Eine neue Forschungsarbeit an der Technischen Universität München (TUM) zeigt, dass diese körpereigene Krebsabwehr nur funktioniert, wenn bestimmte Proteine, die Chaperone, dies zulassen.

Eine Krebstherapie ohne Nebenwirkungen, die gezielt nur Tumorzellen angreift – noch können Ärzte und Patienten davon nur träumen. Dabei hat die Natur ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

Wissensparcour bei der time4you gestartet

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Geometrie eines Elektrons erstmals bestimmt

23.05.2019 | Physik Astronomie

Galaxien als „kosmische Kochtöpfe“

23.05.2019 | Physik Astronomie

Auflösen von Proteinstau am Eingang von Mitochondrien

23.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics