Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Mechanismus der DNA-Bindung identifiziert

21.09.2012
Wissenschaftler aus Jena und München haben einen neuen Mechanismus der DNA-Bindung entdeckt.

Teams um Axel Brakhage, Direktor des Leibniz-Instituts für Naturstoff-Forschung und Infektionsbiologie und Lehrstuhlinhaber an der Universität Jena und Michael Groll von der Technischen Universität München studierten die Wechselwirkung des in der Natur weit verbreiteten Proteinkomplexes CBC mit der DNA.



Der Proteinkomplex CBC bindet die DNA-Doppelhelix. Eine Untereinheit lagert sich in die kleine Furche und steuert so die Genaktivität.

TUM/Huber



Die spezifische Bindung von CBC an die DNA-Doppelhelix beeinflusst die Genaktivität und spielt damit eine wichtige Rolle in der Regulation von Lebensvorgängen in der Zelle wie auch bei der Entstehung von Krankheiten. Die Ergebnisse wurden in der renommierten Fachzeitschrift Structure veröffentlicht.

Jede Zelle eines Organismus beinhaltet DNA, auf der sich sämtliche Gene dieses Lebewesens befinden. Entscheidend für Eigenschaften der einzelnen Zelle und damit auch für den gesamten Organismus ist jedoch, welche Gene zu einem bestimmten Zeitpunkt aktiv sind und in Proteine umgeschrieben werden. Hierfür sind Transkriptionsfaktoren zuständig. Das sind ihrerseits Proteine, die an spezifischen Stellen an die DNA binden und deren räumliche Struktur verändern, wodurch die Aktivität von Genen reguliert wird.

Den Teams um Axel Brakhage und Michael Groll ist es jetzt gelungen, einen neuartigen Mechanismus zu identifizieren, der eine solche Bindung an eine definierte DNA-Sequenz ermöglicht. Sie untersuchten am Schimmelpilz Aspergillus nidulans als Modellorganismus den Transkriptionsfaktor CBC.

CBC steht für CCAAT Binding Complex, weil das Protein ein Komplex aus drei Untereinheiten ist, der auf der DNA exakt die Basensequenz CCAAT erkennt und daran bindet. Diese Bindung verändert die räumliche Struktur der DNA und ermöglicht somit das Ablesen der in der Nachbarschaft befindlichen Gene. Die genaue Wirkungsweise des CBC-Komplexes, der bei allen Organismen außer Bakterien vorkommt, war bislang unbekannt.

Die Forscher stellten durch gentechnische Methoden das CBC-Protein her und brachten es zur Kristallisation – mit und ohne gebundene DNA. Durch Röntgenkristallographie konnten die Münchener Kollegen zeigen, an welchen Stellen die Proteine den Kontakt mit der DNA eingehen. Die Wissenschaftler aus Jena führten detaillierte biochemische Analysen der Bindung durch und komplettierten so die Untersuchungen. Daraus ergibt sich nun erstmals ein genaues Bild des Bindungsmechanismus: zwei der CBC-Bestandteile biegen die DNA, während die dritte Untereinheit eine bestimmte Sequenz in der sogenannten kleinen Furche der DNA-Doppelhelix erkennt.

Somit wird das Ablesen der Gene auf dem nachfolgenden DNA-Abschnitt ermöglicht. „Die Art und Weise, wie CBC an die DNA bindet, ist völlig neuartig und bietet uns interessante Einblicke in die evolutionäre Herkunft und Wirkungsweise dieses wichtigen Proteins“, erläutert Axel Brakhage die Ergebnisse. „Wir können diese Erkenntnisse nun verwenden um Krankheiten, an denen CBC beteiligt ist, besser zu verstehen. Möglicherweise kann CBC als Angriffspunkt für neue Medikamente dienen“.

Originalveröffentlichung
Huber EM, Scharf DH, Hortschansky P, Groll M, Brakhage AA (2012)
DNA Minor Groove Sensing and Widening by the CCAAT-Binding Complex
Structure doi:10.1016/j.str.2012.07.012

Informationen zum HKI
Das Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut – wurde 1992 gegründet und gehört seit 2003 zur Leibniz-Gemeinschaft. Die Wissenschaftler des HKI befassen sich mit der Infektionsbiologie human-pathogener Pilze. Sie untersuchen die molekularen Mechanismen der Krankheitsauslösung und die Wechselwirkung mit dem menschlichen Immunsystem. Neue Naturstoffe aus Mikroorganismen werden auf ihre Wirksamkeit gegen Pilzerkrankungen untersucht und zielgerichtet modifiziert.
Das HKI verfügt derzeit über fünf wissenschaftliche Abteilungen, deren Leiter gleichzeitig berufene Professoren der Friedrich-Schiller-Universität Jena (FSU) sind. Hinzu kommen jeweils vier Nachwuchsgruppen und Querschnittseinrichtungen mit einer integrativen Funktion für das Institut, darunter das anwendungsorientierte Biotechnikum als Schnittstelle zur Industrie. Zur Zeit arbeiten mehr als 300 Menschen am HKI, darunter 110 Doktoranden.

Informationen zur Leibniz-Gemeinschaft
Die Leibniz-Gemeinschaft verbindet 86 selbständige Forschungseinrichtungen. Deren Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute bearbeiten gesellschaftlich, ökonomisch und ökologisch relevante Fragestellungen. Sie betreiben erkenntnis- und anwendungsorientierte Grundlagenforschung. Sie unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an.
Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer in Richtung Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Institute pflegen intensive Kooperationen mit den Hochschulen – u.a. in Form der Wissenschaftscampi –, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem maßstabsetzenden transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam.

Die Leibniz-Institute beschäftigen rund 17.200 Personen, darunter 8.200 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei 1,4 Milliarden Euro.

Ansprechpartner
Dr. Michael Ramm
Wissenschaftliche Organisation
Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e.V.
– Hans-Knöll-Institut –
Beutenbergstrasse 11a
07745 Jena
+49 3641 5321011 (T)
+49 1520 1848494 (M)
+49 3641 5320801 (F)
michael.ramm@hki-jena.de
Presseservice: pr@hki-jena.de

Dr. Michael Ramm | Leibniz-Institut
Weitere Informationen:
http://www.hki-jena.de/
http://www.cell.com/structure/retrieve/pii/S0969212612002638
http://www.leibniz-gemeinschaft.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die „Luft“ im Ozean wird dünner - Sauerstoffgehalte im Meerwasser gehen weiter zurück
11.12.2019 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Beleuchtung von Höhlen vertreibt Fledermäuse – die Farbe des Lichts spielt nur untergeordnete Rolle
11.12.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kein Seemannsgarn: Hochseeschifffahrt soll schadstoffärmer werden

11.12.2019 | Ökologie Umwelt- Naturschutz

Vernetzte Produktion in Echtzeit: Deutsch-schwedisches Testbed geht in die zweite Phase

11.12.2019 | Informationstechnologie

Verbesserte Architekturgläser durch Plasmabehandlung – Reinigung, Vorbehandlung & Haftungssteigerung

11.12.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics