Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Krebs-Schalter entdeckt

17.10.2012
Biochemiker der Universität Jena klären potenziellen Mechanismus der Krebsentstehung auf

Jahr für Jahr trifft rund 500.000 Deutsche die Diagnose Krebs. Auch wenn die Chancen auf eine erfolgreiche Therapie für viele von ihnen immer weiter steigen, sind Krebserkrankungen noch immer die zweithäufigste Todesursache hierzulande.

„Das Tückische an Tumorerkrankungen ist, dass dabei das Gleichgewicht zwischen Prozessen der Zellerneuerung und dem Absterben von Zellen völlig aus dem Ruder läuft“, erläutert PD Dr. Oliver Krämer von der Friedrich-Schiller-Universität Jena. „Tumorzellen sterben nicht ab, sondern vermehren sich praktisch ungebremst immer weiter“, sagt der Biochemiker vom Centrum für Molekulare Biomedizin (CMB). Krämers Arbeitsgruppe am Lehrstuhl für Biochemie von Prof. Dr. Thorsten Heinzel, dem Forschungsprorektor der Jenaer Universität, arbeitet intensiv daran, die molekularen Mechanismen aufzuklären, die zur Entstehung von Tumorzellen führen können.

Wie die Jenaer Forscher in der aktuellen Ausgabe der internationalen Fachzeitschrift „Journal of Molecular Cell Biology“ berichten, haben sie jetzt nicht nur einen potenziellen molekularen Mechanismus der Krebsentstehung entschlüsselt, sondern damit auch einen möglichen Ansatzpunkt für die Krebstherapie identifiziert (DOI: 10.1093/jmcb/mjs013). Die Herausgeber der Zeitschrift würdigen den Aufsatz der Forscher der Uni Jena zudem in besonderer Weise: Er wurde als Titelgeschichte der Printausgabe der Zeitschrift ausgewählt und zusätzlich im Editorial erwähnt.

In ihren aktuellen Untersuchungen haben sich die Forscher auf die Rolle eines Enzyms mit dem Namen „Histon Deacetylase 2“, kurz HDAC2, konzentriert. Dieses kommt in allen menschlichen Zellen vor und hat normalerweise eine wichtige Funktion innerhalb des Zellwachstums. „In Tumorzellen liegt dieses Enzym in stark erhöhten Konzentrationen vor“, sagt Doktorand Tobias Wagner. „Die Vermutung lag daher nahe, dass HDAC2, alleine oder zusammen mit anderen Faktoren, das unkontrollierte Wachstum von Tumorzellen begünstigt“, ergänzt André Brandl, der ebenfalls als Doktorand in Krämers und Heinzels Team an der Studie beteiligt war. Wie die beiden Nachwuchsforscher nun in mehreren Zellkulturmodellen nachweisen konnten, ist HDAC2 nur dann in der Lage seine Funktion innerhalb der Zelle richtig auszuüben, wenn es selbst mit einem Markerprotein namens SUMO versehen ist.

Diese nachträgliche Modifizierung ist es auch, durch die HDAC2 das Tumorwachstum fördert: Sie ermöglicht es dem Enzym an das sogenannte Tumorsuppressor-Protein „p53“ zu binden und bei diesem die funktionell wichtige Acetylierung zu unterbinden. „p53 schützt Zellen normalerweise vor einer Entartung zu Krebszellen, indem es deren Wachstum und Überleben begrenzt“, erläutert Tobias Wagner. Kommt es etwa durch äußere Einflüsse zu Schäden an der DNA (ein potenzieller Auslöser für die Krebsentstehung), so sorgt p53 dafür, dass DNA-Reparaturmechanismen in Gang gesetzt werden oder – falls die Schäden zu gravierend sind – dass die Zelle in den programmierten Zelltod geführt wird. „Durch die Bindung von HDAC2 an p53 wird diese wichtige Funktion von p53 aber gehemmt“, so André Brandl. Die Folge: Die Tumorzellen können ungebremst weiter wachsen.

Das Ausschalten von p53 ist auch der Grund, warum Tumorzellen mit erhöhtem HDAC2-Spiegel nicht mehr auf gängige Chemotherapie-Medikamente ansprechen. Die dabei eingesetzten Substanzen wirken gezielt auf die schnell wachsenden Krebszellen und bringen diese normalerweise zum Absterben. „HDAC2 macht die Tumorzellen allerdings gegen eine solche Behandlung resistent“, so das Resümee der Jenaer Forscher. Ließe sich die Modifizierung von HDAC2 unterbinden, so könnten die Zellen möglicherweise wieder für eine Chemotherapeutika-Behandlung sensibilisiert werden.

Original-Publikation:
Brandl A., Wagner T. et al. Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress. Journal of Molecular Cell Biology 2012; 4(5): 284-93. DOI: 10.1093/jmcb/mjs013

Kontakt:
PD Dr. Oliver Krämer
Zentrum für Molekulare Biomedizin
Friedrich-Schiller-Universität Jena
Hans-Knöll-Straße 2, 07745 Jena
Tel.: 03641 / 949362
E-Mail: oliver.kraemer[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HD-Mikroskopie in Millisekunden
20.09.2019 | Universität Bielefeld

nachricht Alpenflora im Klimawandel: Pflanzen reagieren mit "Verspätung"
20.09.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics