Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Hemmstoff gegen hartnäckige bakterielle Biofilme

06.03.2018

HIPS-Forscher haben ein neues kleines Molekül entwickelt, das die Bildung gefährlicher Biofilme unterdrückt und sich oral verabreichen lässt

Bakterien der Art Pseudomonas aeruginosa weisen häufig Resistenzen gegen gängige Antibiotika auf und zählen zu den Krankenhauskeimen. Sie können alle Organe des Menschen sowie Implantate befallen und in einer dicht zusammengelagerten Gemeinschaft – einem sogenannten Biofilm – lange Zeit im Körper überdauern.


Bakterien der Art Pseudomonas aeruginosa sind äußerst widerstandfähig und kommen fast überall vor.

HZI/Manfred Rohde


Dr. Alexander Titz

Universität Konstanz

Dabei schützt sie der Zusammenhalt im Biofilm vor dem Immunsystem und schirmt sie sogar gegen Antibiotika ab. Am Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) ist es Wissenschaftlern mit einem selbst entwickelten Molekül gelungen, die Biofilmbildung bei Pseudomonas zu unterdrücken.

Das Molekül hat einen weiteren entscheidenden Vorteil: Durch seine geringe Größe eignet es sich zur oralen Einnahme, was bei entsprechenden Wirkstoffen bisher nicht möglich war. Ihre Ergebnisse veröffentlichten die Wissenschaftler im Fachjournal Journal of the American Chemical Society. Die Verleger wählten den Artikel aufgrund seiner hohen Relevanz als Titelthema aus („Editor’s Choice“).

Damit verbunden ist auch eine kostenlose Publikation mit freier Verfügbarkeit („Open Access“). Das HIPS ist ein Standort des Helmholtz-Zentrums für Infektionsforschung (HZI) in Kooperation mit der Universität des Saarlandes und gehört als Teil des HZI auch zum Deutschen Zentrum für Infektionsforschung (DZIF).

Besonders für Krankenhauspatienten mit geschwächtem Immunsystem ist der Erreger Pseudomonas aeruginosa eine ernst zu nehmende Gefahr. Bakterien dieser Art können alle Organe des Körpers infizieren und so zum Beispiel wiederkehrende Lungenentzündungen, Sepsis oder chronische Wundinfektionen verursachen. Durch ihre vielfältigen Resistenzen gegen Antibiotika sind die Bakterien oft nur schwer behandelbar.

Dazu kommt, dass Pseudomonaden in der Lage sind, sich einen eigenen, schützenden Lebensraum zu schaffen: Sie lagern sich zu dichten Kolonien – sogenannten Biofilmen – zusammen, die sie gegen Abwehrreaktionen des Immunsystems und gegen Antibiotika abschirmen. Daher suchen Wissenschaftler nach möglichen Angriffszielen in den Prozessen der Biofilmbildung, um Pseudomonaden zu bekämpfen.

Eine Schlüsselrolle bei der Ausbildung von Biofilmen spielen Lektine. Diese Proteine werden von den Bakterien freigesetzt und binden außerhalb der Bakterienzellen an Zuckermoleküle. So vernetzen sie die Zuckermoleküle zu einer Matrix und helfen den Pseudomonaden, sich am Gewebe des infizierten Wirtes anzuheften und dort eine dichte Kolonie auszubilden.

„Wenn es gelingt, die Zuckerbindestelle der Lektine zu blockieren, kann Pseudomonas keinen Biofilm mehr bilden und wird für Medikamente empfänglich“, sagt Dr. Alexander Titz, der in Saarbrücken die Nachwuchsgruppe „Medizinische Chemie von Naturstoffen“ des Deutschen Zentrums für Infektionsforschung leitet. Ausgehend vom Zuckermolekül Mannose, das eines der natürlichen Bindungspartner des Lektins LecB ist, haben die Wissenschaftler um Titz über fünf Jahre hinweg ein künstliches Molekül entwickelt, das hochspezifisch an LecB bindet und das Protein so blockiert.

„Wir haben uns die dreidimensionale Molekülstruktur des Komplexes von LecB mit Mannose angeschaut und darauf basierend ein kleines Molekül entworfen, das ähnliche Bindeeigenschaften aufweisen sollte“, sagt Titz. „Die Struktur dieses Moleküls haben wir Schritt für Schritt anhand von Laborergebnissen optimiert, sodass es nun ausreichend lange an LecB binden kann und auch gegenüber abbauenden Enzymen des Körpers stabil ist.“

Der entscheidende Vorteil des neuen Moleküls ist seine geringe Größe: „Bisher waren Lektinhemmstoffe große Moleküle mit sehr hohem Gewicht, die entgegen der erwünschten Wirkung die Biofilme sogar teilweise stabilisiert haben, weil sie die Funktion der Zuckermoleküle übernommen haben“, sagt Titz. „Wir haben dagegen in Zellkulturexperimenten eindeutig nachgewiesen, dass kleine Moleküle dies nicht können. Sie hindern die Pseudomonaden tatsächlich daran, einen Biofilm zu bilden.“

Zudem haben die Wissenschaftler vergleichende Versuche zur Darreichungsform des neuen Moleküls an Mäusen durchgeführt. Dazu haben sie den Wirkstoff einer Gruppe von Mäusen intravenös und einer anderen oral verabreicht. Untersuchungen des Blutes und des Urins nach 24 Stunden haben gezeigt, dass der Wirkstoff auch bei oraler Gabe erfolgreich aufgenommen und im Körper verteilt wurde.

„Das ist ein wesentlicher Vorteil kleiner Moleküle, denn bisher waren Lektinhemmstoffe zu groß, um oral eingenommen zu werden – diese müssten immer injiziert werden“, sagt Alexander Titz. Die Entwicklung des neuen LecB-Hemmstoffs erfolgte in enger Kooperation mit den Abteilungen „Chemische Biologie“ (HZI) und „Wirkstoffdesign und Optimierung“ (HIPS). Eine direkte klinische Anwendung ist allerdings noch nicht in Sicht, dazu sind zunächst zahlreiche weitere Studien notwendig.

Am 13. März wird Alexander Titz von der Gesellschaft Deutscher Chemiker (GDCh) mit dem Innovationspreis in Medizinisch/Pharmazeutischer Chemie 2018 ausgezeichnet. Der Preis wird bereits seit 1999 verliehen und würdigt herausragende wissenschaftliche Publikationen und Ergebnisse in der medizinisch-pharmazeutischen Chemie. Er ist mit 5000 Euro dotiert und wird in diesem Jahr geteilt. Weitere Informationen zur Verleihung unter: https://www.gdch.de/service-information/oeffentlichkeitsarbeit/pressedienst-chem...

Originalpublikation:
Roman Sommer, Stefanie Wagner, Katharina Rox, Annabelle Varrot, Dirk Hauck, Eike-Christian Wamhoff, Janine Schreiber, Thomas Ryckmans, Thomas Brunner, Christoph Rademacher, Rolf W. Hartmann, Mark Brönstrup, Anne Imberty, and Alexander Titz: Glycomimetic, Orally Bioavailable LecB Inhibitors Block Biofilm Formation of Pseudomonas aeruginosa. J. Am. Chem. Soc., 2018, DOI: 10.1021/jacs.7b11133

Die Pressemitteilung und Bildmaterial finden Sie auch auf unserer Webseite unter dem Link https://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/neuer_he...

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. Das HZI ist Mitglied im Deutschen Zentrum für Infektionsforschung (DZIF). http://www.helmholtz-hzi.de

Das Helmholtz-Institut für Pharmazeutische Forschung Saarland:
Das Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) ist ein Standort des Helmholtz-Zentrums für Infektionsforschung (HZI). Das Institut wurde im August 2009 vom HZI und der Universität des Saarlandes gegründet, mit dem Ziel, zur Entwicklung neuer Arzneimittel und Therapieoptionen gegen Infektionskrankheiten beizutragen. Die Forscher am HIPS suchen nach neuen Wirkstoffen und verbessern diese für die Anwendung am Menschen. Zudem untersuchen sie, wie der Wirkstoff an seinen Bestimmungsort gelangt. Das HIPS gehört zum Standort Hannover-Braunschweig des Deutschen Zentrums für Infektionsforschung (DZIF). http://www.helmholtz-hzi.de/hips

Das Deutsche Zentrum für Infektionsforschung:
Im Deutschen Zentrum für Infektionsforschung (DZIF) entwickeln bundesweit circa 500 Wissenschaftler aus 35 Institutionen gemeinsam neue Ansätze zur Vorbeugung, Diagnose und Behandlung von Infektionskrankheiten. Ziel ist die Translation: die schnelle, effektive Umsetzung von Forschungsergebnissen in die klinische Praxis. Damit bereitet das DZIF den Weg für die Entwicklung neuer Impfstoffe, Diagnostika und Medikamente gegen Infektionen. Weitere Informationen: http://www.dzif.de

Ihre Ansprechpartner:
Susanne Thiele, Pressesprecherin
susanne.thiele@helmholtz-hzi.de
Dr. Andreas Fischer, Wissenschaftsredakteur
andreas.fischer@helmholtz-hzi.de

Helmholtz-Zentrum für Infektionsforschung GmbH
Presse und Kommunikation
Inhoffenstraße 7
D-38124 Braunschweig

Tel.: 0531 6181-1400; -1405

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics