Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Fermenter für Biowissenschaften

05.02.2010
Eine neue 200-Liter-Fermentationsanlage wurde jetzt an der Fakultät für Biowissenschaften, Pharmazie und Psychologie der Universität Leipzig im alten Heizhaus in der Talstraße 25 in Betrieb genommen. Das Heizhaus, ein viele Jahre leer stehendes Industriedenkmal, konnte zu diesem Zweck vom Staatsbetrieb Sächsisches Immobilien- und Baumanagement (SIB), Niederlassung Leipzig II teilweise saniert werden.

Die Bauarbeiten

Die Sanierungsarbeiten umfassten die Trockenlegung und die Entkernung des Gebäudes im Bereich des Aufstellungsortes des Fermenters sowie die umfassende Sanierung des Gebäudeinneren inklusive der kompletten Erneuerung von Elektrotechnik, Heizung und Sanitär. Für die Fermentationsanlage wurde eine Lüftungsanlage eingebaut.

Der Außenputz wurde nach historischer Fassung erneuert und auch die feingliedrigen Stahlfenster des Gebäudeteiles wurden in Anlehnung an die historischen Fenster heutigen Vorschriften entsprechend, wiederhergestellt.

Um bequem mit Flaschenwagen in die Labore des Fermenters gelangen zu können, mussten die Außenanlagen den Gegebenheiten angepasst werden.

Für die Sanierungsarbeiten stellte der Freistaat Sachsen 537.000 Euro zur Verfügung. Der Fermenter wurde von der DeutschenForschungsgemeinschaft (DFG) finanziert.

Was ist ein Fermenter?

Einen Fermenter oder Bioreaktor muss man sich als großen Kessel vorstellen, wie er beim Bierbrauen genutzt wird. Unser Fermenter fasst 200 Liter und dient der sterilen Züchtung von Mikroorganismen. Dazu setzt man ein Nährmedium in den Kessel, das man mit Mikroorganismen wie Bakterien oder Pilzen impft. Diese finden hier nun den nötigen Nährboden, um zu gedeihen und sich zu vermehren. "Die Mikroorganismen können nun entweder etwas Erwünschtes produzieren wie z.B. Antibiotika oder aber - wie beim Bierbrauen - Alkohol", sagt Prof. Dr. Matthias Boll vom Institut für Biochemie der Universität Leipzig, der als Stoffwechselchemiker und Enzymologe den Fermenter für seine Forschungen braucht. "Manchmal sind aber auch die Organismen selbst von Interesse, wenn sie z.B. noch wenig erforscht sind und neue Fähigkeiten aufweisen."

Abbau von Schadstoffen ohne Sauerstoff

Prof. Boll und sein Team wollen mit dem Fermenter erforschen, wie Schadstoffe ohne Sauerstoff abgebaut werden können. Die daran beteiligten Eiweiße oder fachsprachlich Enzyme fungieren dabei als Biokatalysatoren. Der Schadstoffabbau ohne Sauerstoff ist aber bislang wenig erforscht.

"Zwar weiß man seit ungefähr 60 Jahren, dass und wie der Schadstoffabbau mit Sauerstoff funktioniert. Allerdings gibt es viele Bereiche auf unserer Erde, wo kein Sauerstoff vorhanden ist.", weiß Prof. Boll. Seit kurzem wisse man auch, dass Schadstoffe auch ohne Sauerstoff abgebaut werden können. Dies sei ein wichtiger Prozess vor allem im Grundwasser, oder in Fluss-, See- oder Meeressedimenten.

Die Frage sei aber: Wie geht das vor sich? Man wisse nur, dass viele völlig neue Bakterien mit bislang kaum bekannten Stoffwechselwegen beteiligt sind.

Diese Bakterien will ein Netzwerk von 23 Forschern aus Deutschland und Großbritannien, die innerhalb eines DFG-Schwerpunktprogramms verknüpft sind, nun mit der neuen Fermentationsanlage erforschen. Bislang wurden diese Bakterien nur im kleinen Maßstab gezüchtet. Mit dem Fermenter ist es jetzt erstmals möglich, größere Mengen dieser anaeroben Schadstoffabbauer zu züchten. Anaerob sind die Bakterien, weil sie keinen Sauerstoff für ihre Stoffwechselprozesse brauchen.

Die Anlage muss dabei spezielle Anforderungen erfüllen: so muss sie z.B. resistent gegen Sulfid sein, welches diese Bakterien oft produzieren. Sulfid aber korridiert gewöhnliche Metalle oder ist häufig für Lecks in Öl-Pipelines verantwortlich. Eine Reihe von Sonderanfertigungen garantieren, dass das Sulfid den Fermenter nicht schädigt. Am allerwichtigsten ist aber der 100%ige Ausschluss von Sauerstoff, denn den mögen die Anaerobier gar nicht.

Ziel der Forschungen

"Dies öffnet die Tür, die Funktionsweise der Abbauer erstmals zu verstehen. Es geht darum die noch wenig bekannte Welt dieser Anaerobier zu ergründen.", erklärt Prof. Boll. Das ist kein Selbstzweck. "Wenn es uns gelingt, bislang noch unbekannte Abbauwege und die daran beteiligten biochemischen Reaktionen zu verstehen, kann auch der Schadstoffabbau ohne Sauerstoff besser verstanden werden", so Boll weiter. "Darüber hinaus können gezielt Maßnahmen getroffen werden, diesen zu fördern." So könnten molekulare Werkzeuge entwickelt werden, mit denen die anaeroben Schadstoffabbauer in der Natur aufgestöbert werden können, ihr natürliches Abbaupotential besser beurteilt und gezielt gefördert werdenkann, indem man z.B. den Bakterien Zusatznährstoffe zukommen lässt.

Zuletzt gibt es aber auch eine biotechnologische Seite:
viele der Biokatalysatoren (Enzyme) der Anaerobier, die beim Schadstoffabbau eingesetzt werden sind einzigartig in der Natur. Einige von Ihnen könnten in Zukunft dafür eingesetzt werden, industriell wichtige, chemisch schwierige Reaktionen durchzuführen, beispielsweise bei Herstellung neuer Wirkstoffe in der Pharmaindustrie. Hierzu müssen diese Biokatalysatoren (Enzyme) aber erst einmal isoliert und charakterisiert werden. Und was man dazu braucht, ist viel Zellmasse der Anaerobier, welche wiederum in dem Fermenter gezüchtet werden können.
Weitere Informationen:
Prof. Dr. Matthias Boll
Telefon: (0341) 9736910
E-Mail: boll@uni-leipzig.de

Dr. Bärbel Adams | Universität Leipzig
Weitere Informationen:
http://www.biochemie.uni-leipzig.de/agboll
http://www.uni-leipzig.de/presse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Probenhalter für die Proteinkristallographie
16.09.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Eigen und doch fremd: warum das Immunsystem patienteneigene Stammzellen bekämpft
16.09.2019 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Womit werden wir morgen kühlen?

Wissenschaftler bewerten das Potenzial von Werkstoffen für die magnetische Kühlung

Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Meilensteine auf dem Weg zur Atomkern-Uhr

Zwei Forschungsteams gelang es gleichzeitig, den lang gesuchten Kern-Übergang von Thorium zu messen, der extrem präzise Atomkern-Uhren ermöglicht. Die TU Wien ist an beiden beteiligt.

Wenn man die exakteste Uhr der Welt bauen möchte, braucht man einen Taktgeber, der sehr oft und extrem präzise tickt. In einer Atomuhr nutzt man dafür die...

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Technomer 2019 - Kunststofftechniker treffen sich in Chemnitz

16.09.2019 | Veranstaltungen

„Highlights der Physik“ eröffnet

16.09.2019 | Veranstaltungen

Die Digitalisierung verändert die Medizin

13.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Probenhalter für die Proteinkristallographie

16.09.2019 | Biowissenschaften Chemie

Warum die Erdatmosphäre viel Sauerstoff enthält

16.09.2019 | Geowissenschaften

Wissenschaftler erforschen Produktentstehungsprozesse in neuem Innovationslabor

16.09.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics