Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Einblick in die Reifung von miRNAs

03.07.2018

Ein internationales Forscherteam unter Leitung des Helmholtz Zentrums München, der Technischen Universität München und der Universität Edinburgh hat mit Hilfe integrierter strukturbiologischer Untersuchungen die Reifung einer krebsauslösenden mikroRNA in der Genregulation aufgeklärt. Die Autoren hoffen, aus den in ‘Nature Communications‘ vorgestellten Ergebnissen langfristig neue Therapien ableiten zu können.

MikroRNAs (miRNAs) bilden eine Klasse von Molekülen, die aus kurzen Abfolgen von RNA-Bausteinen bestehen. Sie sind in der Lage, den Aufbau von bestimmten Proteinen zu verhindern, indem sie die entsprechende Bauplan-RNA abbauen.


Die Wissenschaftler konnten nachweisen, wie genau das Protein (blau) die pri-miR-18a (pink) erkennt und deren Struktur derart verändert, dass sie sich zur fertigen miRNA-18a weiterentwickelt.

Bild modifiziert nach Kooshapur et al.

Auch krebsauslösende miRNAs, sogenannte oncomiRs, arbeiten nach diesem Prinzip und verhindern vornehmlich die Herstellung von Proteinen, die die Zelle gegen unkontrolliertes Wachstum schützen. „So führt ein verstärktes Auftreten dieser Moleküle in der Zelle langfristig zur Krebsentstehung“, erklärt Prof. Michael Sattler, Direktor des Instituts für Strukturbiologie am Helmholtz Zentrum München und Lehrstuhlinhaber für Biomolekulare NMR Spektroskopie an der Technischen Universität München.

„Allerdings sind die molekularen Mechanismen, wie manche miRNAs in der Zelle überhaupt hergestellt werden bis heute nicht gut verstanden.“

Dazu muss man wissen: Bevor eine miRNA in der Zelle wirken kann, durchläuft sie mehrere Reifungsschritte und entwickelt sich von einer sogenannten primären pri-miRNA über ein Vorläuferstadium (englisch: precursor, daher pre-miRNA) hin zur reifen miRNA.

Gemeinsam mit Forschenden um Prof. Javier Caceres und Dr. Gracjan Michlewski von der Universität Edinburgh sowie sein Mitarbeiter Hamed Kooshapur (nun National Institutes of Health, USA) untersuchte Sattler in der aktuellen Arbeit die Reifung einer bestimmten pri-miRNA.

„Konkret hatten wir uns auf die Reifung von miRNA-18a konzentriert, die bereits mit Darm-, Brust- und Speiseröhrenkrebs in Verbindung gebracht wurde“, erklärt Michael Sattler. „Um aufzuklären, wie ihre Reifung funktioniert, mussten wir verschiedene Verfahren kombinieren. Dabei kamen sowohl Kernspinresonanz (NMR)-Spektroskopie, Röntgenkristallographie, Kleinwinkel-Röntgenstreuungsanalysen als auch biochemische Experimente zum Einsatz.“

Auf diese Weise konnten die Autoren nachweisen, wie genau ein bestimmtes RNA-Bindeprotein (hnRNP A1) die pri-miRNA-18a erkennt und deren Struktur derart verändert, dass sie sich zur fertigen miRNA-18a weiterentwickelt. Die Forscher gehen davon aus, dass der Mechanismus auch auf andere miRNAs übertragbar ist. „Langfristig hilft uns das Verständnis für die Prozesse dabei, neue Therapieoptionen – beispielsweise gegen Krebs – zu entwickeln“, so Michael Sattler abschließend. „Denn nur wenn wir verstehen, wie die Biologie funktioniert, können wir zielgerichtet darin eingreifen.“

Weitere Informationen

Original-Publikation:
Kooshapur,H. et al. (2018): Structural basis for terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1. Nature Communications, DOI: 10.1038/s41467-018-04871-9

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. www.helmholtz-muenchen.de

Das Institut für Strukturbiologie (STB) erforscht die Raumstruktur biologischer Makromoleküle, analysiert deren Struktur und Dynamik und entwickelt NMR-spektroskopie Methoden für diese Untersuchungen. Ziel ist es, molekulare Mechanismen der biologischen Aktivität dieser Moleküle und ihre Beteiligung an Krankheiten aufzuklären. Die Strukturdaten werden als Grundlage für die rationale Entwicklung kleiner Molekülinhibitoren in Verbindung mit Ansätzen der chemischen Biologie angewandt. www.helmholtz-muenchen.de/stb 

Die Technische Universität München (TUM) ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 40.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurswissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. www.tum.de 

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Tel. +49 89 3187-2238, E-Mail presse@helmholtz-muenchen.de

Wissenschaftlicher Ansprechpartner:
Prof. Dr. Michael Sattler, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Strukturbiologie, Ingolstädter Landstraße 1, 85764 Neuherberg, Tel. +49 89 3187 3800, E-Mail: sattler@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was das Meer zur Klimaregulierung beiträgt: Neue Erkenntnisse helfen bei der Berechnung
14.11.2018 | Jacobs University Bremen gGmbH

nachricht Wie Algen und Kohlefasern die Kohlendioxidkonzentration in der Atmosphäre nachhaltig senken könnten
14.11.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was das Meer zur Klimaregulierung beiträgt: Neue Erkenntnisse helfen bei der Berechnung

14.11.2018 | Biowissenschaften Chemie

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungsnachrichten

Die Umgebung macht das Molekül zum Schalter

14.11.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics