Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Angriffspunkt am Grippe-Virus entdeckt

08.06.2010
Braunschweiger Helmholtz-Forscher finden Mechanismus, um die Vermehrung des Grippe-Virus zu stören.

Jährlich sterben in Deutschland 10.000 bis 30.000 Menschen an einer Grippe, meist durch Viren des Typs „Influenza A“. Wissenschaftler des Braunschweiger Helmholtz-Zentrums für Infektionsforschung (HZI) haben nun einen neuen Angriffspunkt gefunden, um die Vermehrung von Influenza-Viren während einer Infektion einzudämmen. Die Ergebnisse veröffentlichte jetzt das Wissenschaftsmagazin „Virology Journal“.

Wirksame Medikamente gegen Virusinfektionen zu entwickeln ist ein schwieriges Unterfangen. Um einer Abwehr durch das Immunsystem oder antiviralen Wirkstoffen zu entgehen, ändert das Virus durch Mutationen ständig seine Oberfläche. Dadurch werden Viren auch schnell resistent gegen ein Arzneimittel. Forscher sind nun auf der Suche nach Wirkstoffen, die Viren an ihren empfindlichen Stellen treffen - den unveränderlichen Bestandteilen. Diese stabilen Bausteine wechselwirken mit der Maschinerie der Wirtszelle und sind für die Bildung neuer Viren wichtig. Damit sich ein Virus vermehren kann, muss es sein Erbgut freisetzen und in das der Wirtszelle einbringen. Um das Erbmaterial zu entlassen, ist das Virus allerdings auf die Hilfe von Zellproteinen angewiesen. Einen solchen Gehilfen findet es im sogenannten Caveolin-1. Dieses Protein kommt unter anderem in Gefäßwandzellen des Wirtes vor.

In einer Datensuche am Computer identifizierten die Braunschweiger Forscher um Dr. Manfred Wirth aus der Abteilung „Genregulation und Differenzierung“ nun das Influenza-Protein „M2“ als möglichen Interaktionspartner von Caveolin-1. Die Forscher benutzten dann ein in der Bindungsstelle mutiertes Caveolin-1 und brachten das veränderte Protein in Zellen ein, die sie anschließend mit Influenzavirus infizierten. Durch die dadurch verringerte Wechselwirkung zwischen M2 und Caveolin-1 störten sie den Virus dabei, sich zu vermehren. Das Ergebnis: Die Freisetzung neuer Viren reduzierte sich um die Hälfte. Ebenso setzten infizierte Zellen, die nur wenig Caveolin-1 produzierten, deutlich weniger Viren frei als unveränderte Zellen.

„Indem wir verhinderten, dass M2 und Caveolin-1 interagieren, verringerte sich die Ausbreitung der Viren deutlich. Die körpereigene Abwehr sollte mit der stark reduzierten Virenzahl leichter fertig werden“, sagt Manfred Wirth. Die Vorgänge innerhalb der Wirtszelle seien ein erfolgversprechender Ansatzpunkt für neue Medikamente, da die Gegenstücke im Virus unverändert bleiben. „Bis zu einem neuen Medikament ist es aber noch ein weiter Weg. Als nächstes sollen Naturstoffe und Peptide, die am HZI als Sammlung vorliegen, auf eine mögliche Hemmung der Bindung von M2 und Caveolin-1 geprüft werden“, sagt Manfred Wirth. Solch ein Stoff könne dann bei einer akuten Grippeerkrankung dem Immunsystem helfen, das Virus zu bekämpfen.

Originalartikel: Sun L, Hemgard GV, Susanto SA, Wirth M. Caveolin-1 influences human influenza A virus (H1N1) multiplication in cell culture. Virology Journal 2010 May 26, 7:108, doi:10.1186/1743-422X-7-108.

Andreas Fischer | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de

Weitere Berichte zu: Angriffspunkt Caveolin-1 Grippe-Virus HZI Immunsystem Protein Virus Wirkstoffe Wirtszelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics