Neue Wege zur Biomasse-Nutzung

Alternativen zu Erdöl und Erdgas als Kohlenstoffquelle und Brennstoff sind gefragt. Biomasse könnte dabei zukünftig einen bedeutenderen Stellenwert einnehmen.

Forscher aus den USA und China haben jetzt einen neuen Katalysator entwickelt, der Cellulose, die am weitesten verbreitete Form von Biomasse, direkt in Ethylenglycol umsetzt, ein wichtiges Zwischenprodukt der chemischen Industrie. Wie sie in der Zeitschrift Angewandte Chemie berichten, besteht der Katalysator aus Wolframcarbid und Nickel auf Kohlenstoff als Trägermaterial.

Derzeit wird Biomasse vor allem in Form von Stärke genutzt, die zu Zuckern abgebaut und zu Ethanol fermentiert wird. Cellulose zu nutzen, wäre günstiger; sie ist der Hauptbestandteil von pflanzlichen Zellwänden und damit die häufigste organische Verbindung der Erde. Anders als Stärke aus Mais und Getreide ist Cellulose zudem kein Nahrungsmittel, eine Konkurrenz zwischen einer Verwendung als Nahrungsmittel und als Roh- und Brennstoff könnte nicht entbrennen. Bisher wird Cellulose meist fermentativ verarbeitet. Die Spaltung von Cellulose in seine einzelnen Zuckerbausteine, die dann fermentiert werden könnten, ist jedoch ein langsamer, kostenintensiver Prozess. Entsprechend attraktiv erscheint die Alternative einer direkten Umsetzung der Cellulose in nutzbare organische Verbindungen.

Erste Reaktionen wurden entwickelt, die von verschiedenen Edelmetall-Katalysatoren katalysiert werden. Der Nachteil: Es werden große Mengen der teuren Edelmetalle benötigt, um die Cellulose abzubauen. Im großtechnischen Maßstab sind diese Verfahren daher nicht wirtschaftlich. Ein kostengünstigerer und dabei effektiverer Katalysator wäre wünschenswert.

Einen solchen hat das Team um Tao Zhang vom Dalian Institute of Chemical Physics (China) und Jingguang G. Chen von der University of Delaware (Newark, USA) nun entwickelt. Der Katalysator besteht aus Wolframcarbid, das auf einen Träger aus Kohlenstoff aufgebracht wird. Kleine Mengen Nickel verbessern die Leistungsfähigkeit und vor allem die Selektivität des Katalysatorsystems: Dank eines synergistischen Effekts zwischen Nickel und Wolframcarbid lässt sich die Cellulose nicht nur zu 100% umsetzen, sondern der Anteil von Ethylenglycol an den entstehenden Polyalkoholen auf erstaunliche 61% steigern. Ethylenglycol ist ein wichtiges Zwischenprodukt der chemischen Industrie. Es wird beispielsweise in der Kunststoffindustrie bei der Produktion von Polyesterfasern und -harzen benötigt und dient in der Automobilindustrie als Frostschutzmittel.

Angewandte Chemie: Presseinfo 37/2008

Autor: Jingguang G. Chen, University of Delaware, Newark (USA), http://www.che.udel.edu/research_groups/chen/

Angewandte Chemie, doi: 10.1002/ange.200803233

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Media Contact

Dr. Renate Hoer idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Weltweit erster Linienscanner

…mit monolithisch-integrierten Terahertz-Detektoren für industrielle Anwendungen. Das Ferdinand-Braun-Institut hat einen Terahertz-Linienscanner für Kunststoff-Bauteile entwickelt, mit dem sich auch größere Scanlinienlängen im industriellen Umfeld kostengünstig realisieren lassen. Der Technologiedemonstrator basiert erstmals…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer