Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Strukturdaten zu Talin erklären Selbsthemmungs-Mechanismus

20.09.2019
  • Fehlfunktionen der Zellanhaftung spielen bei Krebserkrankungen und bei Immunreaktionen eine zentrale Rolle
  • Talin ist eines der zentralen Proteine in der Maschinerie der Zellanhaftung
  • Mithilfe der Kryo-Elektronenmikroskopie wurde die komplette Struktur des Talins entschlüsselt
  • Der Regulation Mechanismus des Proteins kann jetzt erklären werden

Ein komplexer Organismus ist aus Zellen aufgebaut, welche untereinander oder mit Strukturen in Zwischenzellräumen in Kontakt stehen. Damit Zellen mit der Umgebung physischen Kontakt aufnehmen können, besitzen sie an ihrer Zelloberfläche punktuelle Kontaktstellen.


Regulationsmechanimus des Talin: vom kugelförmigen, inhibierten Zustand zur länglichen und aktiven Form

Foto: ©Naoko Mizuno, MPI für Biochemie

Hierbei handelt es sich aber nicht um statische, sondern um dynamische Verbindungen. Besonders bei Zellwanderungen während der Zellentwicklung, bei Immunreaktionen und der Blutgerinnung muss ein fein regulierter Anheftungs- und Ablösungsprozess gewährleistet sein. Deshalb bestehen die Kontaktstellen aus einer ganzen Maschinerie von Proteinen.

In der Zellanhaftungsmaschinerie sind Talin und Integrin zwei zentrale Proteine, an denen in den letzten Jahren schon viel geforscht wurde. Gemeinsam mit ihrem Team hat Naoko Mizuno, Leiterin der Forschungsgruppe „Zellulärer Membrantransport“ am Max-Planck-Institut für Biochemie jetzt die Struktur und den Regulationsmechanismus des Proteins Talin mithilfe der Kryo-Elektronenmikroskopie gelöst.

„Obwohl Talin als Schlüsselprotein der Zellmigration bekannt ist, gab es noch viele offene Fragen zur Regulation, da die Architektur des gesamten Moleküls unbekannt war“, so Mizuno.

Dirk Dedden, Erstautor der Studie erzählt: „Wir haben uns auf die Analyse des gesamten Proteins konzentriert. Mithilfe verschiedener moderner biophysikalischer Methoden haben wir herausgefunden, welche Umgebungsbedingungen dazu führen, dass sich der Zustand des Proteins reversibel ändert.“

Dank kontrollierbarer Laborbedingungen konnten die Forscher jetzt die exakte molekulare Struktur per Kryo-Elektronenmikroskopie bestimmten.

Talin, wie eine mechanische Feder, ist in seiner inaktiven Form kugelförmig und in seinem aktiven Zustand länglich. Jetzt konnten die Forscher zeigen, welche Bereiche des Talins in ihrem kugelförmigen, selbsthemmenden Zustand für die Umgebung nicht zugänglich sind.

Das bedeutet, dass Nachbarproteine nicht mit dem Molekül interagieren können und die Zelle selbst nicht an umliegendes Gewebe anhaften kann. In seiner lägnlichen, aktiven Form dient das Molekül als Bindungsplattform für viele Nachbarproteine was zudem die Anhaftung der Zelle an die Umgebungstsrukturen fördert.

Naoko Mizuno erklärt: „Unsere Ergebnisse haben hoffentlich langfristig auch einen medizinischen Nutzen, denn besonders bei Krebserkrankungen funktioniert der Zellanhaftungsprozess nicht mehr richtig. Talin ist als Aktivator von Integrin bekannt und Integrin ist ein bekanntes Zielprotein für die Wirkstoffe bestimmter Krebsmedikamente. Wir wünschen uns, dass das Verständnis der Regulation des Anhaftungsmechanismus hilft Krankheitsprozesse zu verstehen und neue Therapien zu entwickeln“.

Wissenschaftliche Ansprechpartner:

Naoko Mizuno, PhD
Zellulärer Membrantransport
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-mail: mizuno@biochem.mpg.de
http://www.biochem.mpg.de/en/rg/mizuno

Originalpublikation:

D. Dedden, S. Schumacher, C. F. Kelley, M. Zacharias, C. Biertümpfel, R. Fässler, N. Mizuno: The architecture of talin1 reveals an autoinhibition 1 mechanism. Cell, September 2019
https://www.cell.com/cell/pdf/S0092-8674(19)30953-5.pdf

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie
Weitere Informationen:
http://www.biochem.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics