Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Reissorte: Versteckten Hunger bekämpfen

08.08.2017

ETH-Forschende haben eine neue Reissorte entwickelt, die in ihren Körnern nicht nur die Spurenelemente Eisen und Zink anreichert, sondern gleichzeitig auch Beta-Karotin als Vorstufe von Vitamin A erzeugt. Damit liesse sich der «versteckte Hunger» in Entwicklungsländern wirkungsvoll eindämmen.

Nahezu jeder zweite Mensch deckt seinen täglichen Kalorienbedarf hauptsächlich mit Reis. Dieser macht zwar satt, enthält aber nur wenige oder keine lebenswichtigen Spurenelemente. Insbesondere in weiten Teilen Asiens und Afrikas leiden Menschen an Mangelernährung, weil sie über die tägliche Nahrung zu wenig Zink, Eisen oder auch Vitamin A aufnehmen, um gesund zu bleiben.


Die neue Reislinie im Gewächshaus kann in Zukunft Reiskonsumenten mit drei lebenswichtigen Spurenelementen und Nährstoffen versorgen.

ETH Zürich / z.V.g. Navreet Bhullar

Eisenmangel führt etwa zu Blutarmut, verzögerter Hirnreifung und erhöhter Mütter- und Säuglingssterblichkeit. Mangelt es Kindern an Vitamin A, können sie erblinden, und ihr Immunsystem ist geschwächt. Sie erleiden deshalb häufiger Infektionskrankheiten wie Masern, Durchfall oder Malaria.

Golden Rice gegen Vitamin-A-Mangel

Um dieses Übel an der Wurzel zu packen, entwickelten ETH-Forschende unter Leitung von Ingo Potrykus schon vor Jahren eine neue Reislinie, die um das Jahr 2000 als «Golden Rice» bekannt wurde. Diese Linie war eine der ersten gentechnisch veränderten Reissorten, in der Wissenschaftler die Produktion von Beta-Karotin, also der Vorstufe von Vitamin A, im weissen Teil des Reiskorns realisieren konnten.

Golden Rice wurde später verbessert und wird mittlerweile in den Züchtungsprogrammen mehrerer Länder eingesetzt, hauptsächlich in Südostasien. Um weitere Mangelerkrankungen zu bekämpfen, entwickelten Forscher im Labor für Pflanzenbiotechnologie von Professor Wilhelm Gruissem an der ETH Zürich und in anderen Ländern in der Folge auch Reis- und Weizenlinien, die beispielsweise Eisen im Korn anreicherten.

Alle diese neu geschaffenen Reislinien haben aber etwas gemeinsam: Sie können nur ein mangelndes Spurenelement abdecken. Die Idee, mehrere Spurenelemente in einer Reispflanze zu kombinieren und quasi ein Multivitamin- und Mehrfachnährstoffreis herzustellen, konnte bislang nicht realisiert werden.

Erster Multifunktions-Reis

Nun ist aber einer Gruppe um Navreet Bhullar, Oberassistentin im Labor für Pflanzenbiotechnologie an der ETH Zürich, diesbezüglich ein Durchbruch gelungen. Die entsprechende Studie ist vor Kurzem in der Zeitschrift Scientific Reports erschienen.

Die Forscherin und ihr Doktorand Simrat Pal Singh haben es geschafft, Reispflanzen gentechnisch so zu modifizieren, dass deren polierte Körner neben ausreichenden Mengen an Eisen und Zink auch bedeutend mehr Beta-Karotin im weissen Teil des Korns enthalten als die nicht modifizierte Ausgangssorte. «Unsere Resultate zeigen, dass es möglich ist, in einer einzigen Reispflanze mehrere wichtige Mikronährstoffe für eine gesunde Ernährung – Eisen, Zink und Beta-Karotin – zu kombinieren», erklärt Bhullar.

Der Erfolg aus Sicht der Wissenschaft ist, dass die vier verwendeten Gene für die Anreicherung der Mikronährstoffe als sogenannte Genkassette an einem einzigen Ort (Locus) in das Reiserbgut eingesetzt werden konnten. Dies hat den Vorteil, dass der Gehalt von Eisen, Zink und Beta-Karotin gleichzeitig durch Kreuzungen in Reissorten verschiedener Länder erhöht werden kann. Ansonsten wäre es notwendig, transgene Reislinien für jeweils einzelne Mikronährstoffe miteinander zu kreuzen, um diese im Reiskorn wie gewünscht erhöhen zu können.

An diesem Prinzipiennachweis hat Bhullar und ihre Doktoranden mehrere Jahre geforscht. Die Körner der veränderten Reislinie enthalten nun zwar mehr Beta-Karotin als die unveränderte Ausgangssorte (japonica-Varietät), aber je nach Linie bis zu zehnmal weniger als Golden Rice 2, die verbesserte Variante des Golden Rice. «Würde man aber 70 Prozent des derzeit verzehrten weissen Reises durch unsere Multinährstoff-Linie ersetzen, könnte zusätzlich zur verbesserten Versorgung mit Eisen und Zink jetzt auch schon die Vitamin-A-Versorgung markant verbessert werden», betont die Forscherin.

Im Gewächshaus erprobt

Noch befinden sich die neuen Multinährstoff-Reislinien im Teststadium. Die Pflanzen wurden bisher erst im Gewächshaus angepflanzt und auf ihren Nährstoffgehalt untersucht. «Wir werden die Linien weiterentwickeln», sagt Bhullar. Es ist geplant, ausgewählte Linien dann unter kontrollierten Bedingungen im Freiland zu testen, um herauszufinden, ob die gewünschten und auch die agronomischen Eigenschaften erhalten bleiben und genauso gut funktionieren wie im Gewächshaus.

Bhullar hofft, dass die neuen Reislinien im nächsten Jahr im Feld getestet werden können. Aber sie kann nicht sagen, wann sie frühestens von Landwirten angebaut werden könnten. «Es werden sicher noch fünf Jahre vergehen, ehe der Multinährstoff-Reis zur Eindämmung des ’versteckten Hungers’ eingesetzt werden kann», sagt sie.

Literaturhinweis

Singh SP, Gruissem W, Bhullar NK. Single genetic locus improvement of iron, zinc and β-carotene content in rice grains. Scientific Reports, published online 31 July 2017. DOI:10.1038/s41598-017-07198-5

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2017/08/multifunkt...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Corona-Forschung an BESSY II: Zwei Tage Messbetrieb für die Suche nach dem richtigen Schlüssel
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Mehr Vielfalt: Öko-Landwirtschaft bietet Heimat für 60% mehr Schmetterlingsarten
02.04.2020 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenimaging: Unsichtbares sichtbar machen

02.04.2020 | Physik Astronomie

Innovative Materialien und Bauelemente für die Terahertz-Elektronik

02.04.2020 | Materialwissenschaften

Besser gewappnet bei Überflutungen in der Stadt

02.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics