Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue potenziell therapeutische Targets für nicht-alkoholische Fettlebererkrankung entdeckt

15.10.2019

Eine der wichtigsten Begleiterkrankungen bei Typ-2-Diabetes ist die nichtalkoholische Fettleber (NAFLD). Durch das weltweit verstärkte Aufkommen dieser Krankheit und den limitierten Behandlungsmöglichkeiten, ebnet NAFLD den Weg für weitere schwere Leberkrankheiten wie Leberzirrhose und Leberkarzinom. Eine Forschergruppe am Institut für Diabetes und Krebs am Helmholtz Zentrum München hat ein neues potenziell therapeutisches Target für die Behandlung von NAFLD entdeckt: Rab24. Die Studie wurde in Nature Metabolism veröffentlicht.

Rab24 ist eine kleine Rab GTPase, die sich als neuer Regulator der mitochondrialen Aktivität und Plastizität erwiesen hat. Die Forschergruppe um Diabeteswissenschaftlerin Anja Zeigerer konnte darlegen, dass Rab24 bei adipösen NAFLD-Patienten in der Leber stark hochreguliert ist.


Lebermitochondrien - die metabolischen Kraftwerke

© Anja Zeigerer, Institut für Diabetes und Krebs (IDC), Helmholtz Zentrum München

In einem nächsten Schritt konnte sie nachweisen, dass durch die Reduzierung von Rab24 in Modellen für ernährungsbedingte Fettleibigkeit die Lebersteatose und die Glukosetoleranz stark verbessert werden. Dies deutet auf eine allgemeine Verbesserung des Gesundheitszustandes der Leber und des Organismus hin. Rab24 ist daher ein neues potenziell therapeutisches Target für die Behandlung von NAFLD.

„Die Verbreitung von Typ-2-Diabetes und seiner Begleiterkrankungen wie NAFLD nimmt ungemein zu. Weltweit sind 1,8 Milliarden Menschen von NAFLD betroffen und es gibt keine zugelassenen Behandlungsmöglichkeiten auf dem Markt. Daher ist es besonders wichtig, neue intrazelluläre Targets wie Rab24 für mögliche therapeutische Optionen zu erforschen“, sagt Anja Zeigerer.

Weniger Rab24, bessere Funktion der Mitochondrien

Auf der Suche nach neuen therapeutischen Targets konzentrierte sich die Gruppe von Anja Zeigerer auf Komponenten der intrazellulären Transportsystemmaschinerie sowie der Organellenintegrität. Die Gruppe analysierte neue Funktionen von Membrantransportkandidaten bei der Kontrolle des Leberglukose- und Lipidstoffwechsels. Dabei entdeckte das Team Rab24 als neuen Regulator der Dynamik von Mitochondrien und des Energiestoffwechsels.

Die Dynamik von Mitochondrien wird stark durch deren Plastizität und Umsatz reguliert, der wiederrum durch die Verfügbarkeit von Nährstoffen gesteuert wird. Fasten hemmt die Teilung der Mitochondrien und induziert hochverknüpfte und funktionsfähigere Mitochondrien, die alle verfügbaren Substrate für die Energieerzeugung nutzen können. Bei Stoffwechselkrankheiten mit ständigem Nahrungsüberangebot sind die Mitochondrien fragmentiert, was ihre Aktivität und Atmungsfähigkeit stark reduziert.

Die Gruppe fand heraus, dass Rab24 die für die Teilung der Mitochondrien verantwortliche Maschinerie beeinflusst und die Mitochondrien durch die Verringerung von Rab24 besser miteinander verbunden und daher funktionsfähiger sind. Interessanterweise stellte die Gruppe eine Akkumulation von Rab24 in der Leber von übergewichtigen Patienten mit NAFLD fest.

Diese Anreicherung könnte zu einer erhöhten Anzahl von fragmentierten Mitochondrien und einer vermehrten Energiespeicherung in diesen Patienten führen. Die Daten, die aus der Reduzierung von Rab24 in Modellen von ernährungsbedingter Fettleibigkeit gewonnen wurden, bieten die Aussicht auf eine therapeutische Anwendung von zellulären Regulatoren – wie Rab24 für NAFLD. Darüber hinaus unterstreichen die Ergebnisse einen funktionellen Zusammenhang zwischen dem intrazellulärem Membrantransport und systemischer metabolischer Dysfunktion.

„In einem nächsten Schritt möchten wir Rab24 als potenziell therapeutisches Target für NAFLD genauer untersuchen. Unser Ziel ist es, Inhibitoren zu finden, die die Wirkung von Rab24 auf die Teilung von Mitochondrien hemmen und zu testen, ob solche Inhibitoren die beobachteten Verbesserungen dieser Studie imitieren können“, erklärt Susanne Seitz, Erstautorin der Studie.

Starke innerinstitutionelle Zusammenarbeit und Finanzierung

Die Studie wurde unter der Leitung von Prof. Stephan Herzig, Direktor des Instituts für Diabetes und Krebs, durchgeführt. Sie profitierte stark von der Infrastruktur des Helmholtz Zentrums München: Inspiriert durch eine Kollaboration mit der Deutschen Mausklinik und Prof. Martin Hrabe de Angelis, Institut für Experimentelle Genetik; unterstützt vom Leipziger Satelliteninstitut HI-MAG in Kollaboration mit Prof. Matthias Blüher, der wertvolle menschliche Proben für Expressionsanalysen zur Verfügung stellte; und gefördert von der Deutschen Forschungsgemeinschaft (DFG), der European Diabetes Foundation (EFSD) und dem Deutschen Zentrum für Diabetesforschung (DZD).

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus, Allergien und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.500 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 19 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören.

Das Institut für Diabetes und Krebs (IDC) ist Mitglied des Helmholtz Diabetes Zentrums (HDC) am Helmholtz Zentrum München und Partner im gemeinsamen Heidelberg-IDC Translationalen Diabetes-Programm. Das Institut für Diabetes und Krebs ist eng in das Deutsche Zentrum für Diabetesforschung (DZD) und in den Sonderforschungsbereich (SFB) "Reaktive Metaboliten und Diabetische Komplikationen" an der Medizinischen Universität Heidelberg integriert. Das IDC erforscht die molekularen Grundlagen schwerer metabolischer Erkrankungen, wie dem Metabolischen Syndrom und Typ 2 Diabetes, und deren Bedeutung für die Tumorentstehung und -progression.

Wissenschaftliche Ansprechpartner:

Dr. Anja Zeigerer
Helmholtz Zentrum München
Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)
Institut für Diabetes und Krebs
Ingolstädter Landstraße 1
85764 Neuherberg
Tel. +49 89 3187-1049
E-mail: anja.zeigerer@helmholtz-muenchen.de

Originalpublikation:

Anja Zeigerer et al., 2019: Hepatic Rab24 controls blood glucose homeostasis via improving mitochondrial plasticity. Nature Metabolism, DOI: 10.1038/s42255-019-0124-x

Helmholtz Zentrum München Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt
Weitere Informationen:
https://www.helmholtz-muenchen.de/presse-medien/pressemitteilungen/alle-pressemitteilungen/pressemitteilung/article/46799/index.html#!prettyPhoto

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht KI-gesteuerte Klassifizierung einzelner Blutzellen: Neue Methode unterstützt Ärzte bei der Leukämiediagnostik
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmbakterien könnten Entstehung von Multipler Sklerose beeinflussen
13.11.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mehr digitale Prozesse für den Mittelstand

13.11.2019 | Unternehmensmeldung

dormakaba mit 4 Architects' Darling in Gold ausgezeichnet

13.11.2019 | Förderungen Preise

Effiziente Motorenproduktion mit der neuesten Generation des LZH IBK

13.11.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics