Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Nervenzellen fürs Gehirn

27.10.2016

Verliert unser Gehirn Nervenzellen, kann es diesen Verlust selbst kaum kompensieren. Wissenschaftler und Ärzte hoffen daher, mit transplantierten Nervenzellen Schäden durch Verletzungen oder Krankheiten auszugleichen. Inwieweit sich die neuen Zellen in ein bestehendes Nervennetzwerk integrieren und dessen Aufgaben übernehmen können, ist jedoch unklar. Nun zeigen Wissenschaftler der Ludwig-Maximilians-Universität München, des Max-Planck-Instituts für Neurobiologie und des Helmholtz Zentrums München in Mäusen, dass transplantierte embryonale Nervenzellen zu gleichwertigen Mitgliedern eines bestehenden Nervennetzwerks heranwachsen und die Aufgaben ihrer neuen Position vollständig übernehmen.

Neurodegenerative Erkrankungen wie Alzheimer oder Parkinson, aber auch ein Schlaganfall oder bestimmte Verletzungen, führen zum Verlust von Nervenzellen. Da das Säugetiergehirn verlorene Nervenzellen nur in einzelnen, kleinen Bereichen selbst ersetzen kann, ist der Zellverlust in der Regel permanent.


Transplantierte Nervenzellen (blau) verknüpfen sich im erwachsenen Mäusehirn spezifisch und stabil mit Nervenzellen des Empfängergewebes (gelb) und können so Lücken im neuronalen Netzwerk schließen.

Sofia Grade (LMU/Helmholtz Zentrum München

Die Transplantation junger Nervenzellen in ein betroffenes Nervennetzwerk, zum Beispiel bei Patienten mit der Parkinson-Krankheit, lassen auf die Möglichkeit einer medizinischen Verbesserung der klinischen Symptome hoffen. Ob die in bisherigen Studien transplantierten Zellen jedoch helfen, vorhandene Lücken zu überbrücken, oder ob sie tatsächlich die Aufgaben der verlorenen Zellen übernehmen, blieb unbekannt.

In einer gemeinsamen Studie, die vom Sonderforschungsbereich 870 der Deutschen Forschungsgemeinschaft unterstützt wurde, haben Wissenschaftler des Max-Planck-Instituts für Neurobiologie, der Ludwig-Maximilians-Universität München und des Helmholtz Zentrums München nun die funktionale Integration transplantierter Nervenzellen in der Sehrinde der Maus untersucht.

"Dieser Hirnbereich war optimal für unsere Untersuchungen“, erklärt Magdalena Götz, die sich die Leitung der Studie mit Mark Hübener teilt. Der fügt hinzu: „Mittlerweile kennen wir die Verknüpfungen und Funktionen dieser Nervenzellen so gut, dass wir einschätzen konnten, ob die neuen Nervenzellen echte Aufgaben im Netzwerk übernehmen.“

Im Versuch transplantierten die Forscher embryonale Nervenzellen der Großhirnrinde in läsionierte Sehrindennetzwerke erwachsener Mäuse. Im Verlauf der folgenden Wochen und Monate beobachteten die Neurobiologen dann unter dem Zwei-Photonen-Mikroskop, wie sich die unreifen Nervenzellen zu den sogenannten Pyramidenzellen ausdifferenzierten, die in den beschädigten Bereich gehören. „Allein zu sehen, dass die Zellen überleben und sich weiterentwickeln, war schon eine aufregende Beobachtung“, berichtet Mark Hübener, der zusammen mit Tobias Bonhoeffer am Max-Planck-Institut für Neurobiologie den Aufbau und die Funktion der Sehrinde entziffert.

„Doch richtig spannend wurde es, als wir die Signale der neuen Zellen näher unter die Lupe genommen haben.“ In ihrer gemeinsamen Studie konnten die Wissenschaftlerinnen Susanne Falkner und Sofia Grade zeigen, dass die neuen Zellen sich genauso wie die Nervenzellen dieser Region verknüpfen und auf Sehreize antworteten.

Zum ersten Mal konnten auch die Verbindungen der transplantierten Nervenzellen im Gehirn untersucht werden. Erstaunlicherweise verknüpfen sich die Pyramidenzellen, die aus den transplantierten Jungzellen entstanden waren, mit exakt den richtigen Nervenzellen im gesamten Netzwerk des Gehirns. So erhielten sie die gleichen Informationen wie die ausgefallenen, ursprünglichen Zellen des Nervennetzwerks und konnten diese entsprechend verarbeiten. Auch die nachgeschalteten Nervenzellen entsprachen denen der untergegangenen Zellen.

„Die fremden Nervenzellen haben somit mit hoher Genauigkeit eine Lücke in einem neuronalen Netzwerk geschlossen, das unter natürlichen Umständen niemals neue Nervenzellen integrieren würde“, schwärmt Magdalena Götz, die mit ihren Teams am Helmholtz Zentrum und der Ludwig-Maximilians-Universität untersucht, wie verlorene Nervenzellen wieder ersetzt werden können. Die neue Studie zeigt nun, dass mit Hilfe fremder Zellen auch das erwachsene Säugetiergehirn seine Regenerationsfähigkeit behält und so funktionale Lücken in einem bestehenden Netzwerk schließen kann.

ORIGINALVERÖFFENTLICHUNG

Susanne Falkner*, Sofia Grade*, Leda Dimou, Karl-Klaus Conzelmann, Tobias Bonhoeffer, Magdalena Götz**, Mark Hübener**
Transplanted embryonic neurons integrate into adult neocortical circuits
Nature, online am 26. Oktober 2016
*gemeinsame Erstautoren; **gemeinsame Studienleiter

KONTAKT

Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie
Öffentlichkeitsarbeit
Tel.: 089 – 8578 3514
Email: merker@neuro.mpg.de

Prof. Dr. Mark Hübener & Prof. Dr. Tobias Bonhoeffer
Max-Planck-Institut für Neurobiologie
Abteilung "Synapsen - Schaltkreise - Plastizität"
Email: mark@neuro.mpg.de

Prof. Dr. Magdalena Götz
Biomedizinisches Centrum der Ludwig-Maximilians-Universität und Institut für Stammzellforschung am Helmholtz Zentrum München

Weitere Informationen:

http://www.helmholtz-muenchen.de/forschung/forschungsexzellenz/forscherportraets... - Webseite von Prof. Dr. Magdalena Götz
http://www.neuro.mpg.de/huebener - Webseite von Prof. Dr. Mark Hübener
http://www.neuro.mpg.de/bonhoeffer - Webseite von Prof. Dr. Tobias Bonhoeffer

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Erkenntnis: Darmbakterien werden stark durch die Bauchspeicheldrüse kontrolliert
19.03.2019 | Universität Greifswald

nachricht Mikroben können auf Stickstoffmonoxid (NO) wachsen
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Oszillation im Muskelgewebe

Wenn ein Muskel wächst oder eine Verletzung in ihm ausheilt, verwandelt sich ein Teil seiner Stammzellen in neue Muskelzellen. Wie dieser Prozess über zwei oszillierend hergestellte Proteine gesteuert wird, beschreibt nun das MDC-Team um Carmen Birchmeier im Fachjournal „Genes & Development“.

Die Stammzellen des Muskels müssen jederzeit auf dem Sprung sein: Wird der Muskel beispielsweise beim Sport verletzt, ist es ihre Aufgabe, sich so rasch wie...

Im Focus: Das Geheimnis des Vakuums erstmals nachweisen

Neue Forschungsgruppe an der Universität Jena vereint Theorie und Experiment, um erstmals bestimmte physikalische Prozesse im Quantenvakuum nachzuweisen

Für die meisten Menschen ist das Vakuum ein leerer Raum. Die Quantenphysik hingegen geht davon aus, dass selbst in diesem Zustand niedrigster Energie noch...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Test der Symmetrie der Raumzeit mit Atomuhren

Der Vergleich zweier optischer Atomuhren bestätigt ihre hohe Genauigkeit und eine Grundannahme der Relativitätstheorie - Nature-Veröffentlichung

Einstein formulierte in seiner Speziellen Relativitätstheorie die These, die Lichtgeschwindigkeit sei immer und unter allen Bedingungen gleich. Doch diese...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Ausprobieren und diskutieren

19.03.2019 | Veranstaltungen

Wissenschaftliche Tagung zur Gesundheit von Meeressäugern

18.03.2019 | Veranstaltungen

Tuberkulose - eine der ältesten Krankheiten der Menschheit eliminieren!

15.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Organische Halbleiter: Ein Transistor für alle Fälle

19.03.2019 | Physik Astronomie

Additive Druckprozesse für flexible Touchscreens mit erhöhter Material- und Kosteneffizienz

19.03.2019 | HANNOVER MESSE

Forschung für weniger Plastik im Einkaufskorb

19.03.2019 | Ökologie Umwelt- Naturschutz

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics