Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode zur Identifikation von krebsbekämpfenden Immunzellen

08.09.2017

Im Kampf gegen Krebs ist die klinische Immuntherapie zum führenden Innovationsgebiet geworden. Sie kann das Immunsystem so aktivieren, dass es Krebszellen zerstört und neue Krebsableger (Metastasen) verhindert. Für eine optimale Aktivierung müssen diejenigen Komponenten des Immunsystems mobilisiert werden, die besonders effektiv gegen Krebszellen vorgehen. Um diese Komponenten, die für den Therapieerfolg entscheidend sind, ausfindig zu machen, haben die Professoren Nathalie Rufer und Daniel Speiser der Universität Lausanne eine Methode entwickelt, mit deren Hilfe die Bindungsstärke zwischen Immunzellen und Krebszellen bestimmt werden kann.

Das Immunsystem enthält Unmengen an Immunzellen – die sogenannten zytotoxischen T-Lymphozyten oder auch einfach T-Zellen. Diese funktionieren nach dem Schlüssel-Schloss-Prinzip: Jede T-Zelle verfügt über einen T-Zell-Rezeptor (TZR), der bestimmte Viren, Bakterien oder kranke Zellen erkennt und zerstört. Im Krankheitsfall kann das Immunsystem dann äußerst gezielt genau diejenigen T-Zellen auswählen und multiplizieren, welche die besten Fähigkeiten haben, den Patienten zu schützen.


BU siehe Text "Legende zur Abbildung"

Krebszellen sind gesundem Gewebe jedoch sehr ähnlich und werden somit vom Immunsystem oft nicht als fremd erkannt. Die Aktivität der entsprechenden T-Zellen ist daher in der Regel gering. Für eine effektive Bekämpfung der Krebszellen müssen die geeigneten T-Zellen im Rahmen einer Immuntherapie gezielt vermehrt und aktiviert werden. Die Professoren Nathalie Rufer und Daniel Speiser arbeiten derzeit an einem Forschungsprojekt der Universität Lausanne, das die Identifikation und Aktivierung dieser geeigneten Zellen vereinfachen soll.

Die Rolle der Bindungsstärke zwischen Immunzellen und Krebszellen

Die Bindungsstärke zwischen T-Zellen-Rezeptoren und Krebszellen ist kennzeichnend dafür, wie effektiv die T-Zelle gegen die Krebszelle vorgehen kann. Nach klinischen Studien und mehrjähriger Arbeit ist es den beiden Forschern nun gelungen eine spezielle Methode zu entwickeln, anhand derer diese gemessen werden kann.

Die Resultate zeigen, dass die T-Zellen mit der optimalen Bindungsstärke nicht nur am intensivsten mit Krebszellen interagieren, sondern sich auch am meisten vermehren, die stärkste Zytotoxizität aufweisen und somit Krebszellen am effizientesten töten. „In unseren Untersuchungen haben wir festgestellt, dass mit unserer Methode tatsächlich die besten T-Zellen für den Einsatz gegen den Krebs identifiziert werden können. Im Gegensatz zu anderen Messtechniken, kann unsere Methode daher nun regelmäßig eingesetzt werden“, erläutert Prof. Daniel Speiser.

„Dabei zeigte sich auch, dass die Bindungsstärke für eine optimale T-Zellfunktion zwar hoch, jedoch nicht zu hoch sein darf. Wir haben herausgefunden, dass die TZR nicht zu lange binden dürfen. Nur wenn sie sich wieder loslösen, können die T-Zellen mit weiteren Krebsmolekülen und auch weiteren Krebszellen interagieren und sie zerstören“, so Speiser weiter.

Reduzierung von Nebenwirkungen in der Immuntherapie

Im Rahmen der neuen Immuntherapien werden Medikamente eingesetzt, die die T-Zellen des Patienten aktivieren. Diese Checkpoint-Blockaden haben jedoch auch zahlreiche, oft gravierende Nebenwirkungen. Aktivierte T-Zellen greifen nämlich oft nicht nur die kranken Krebszellen, sondern auch gesundes Gewebe an. Durch die Ermittlung der Bindungsstärke erhofft sich die Forschung, dass künftig lediglich die für die Immuntherapie geeigneten T-Zellen mobilisiert werden können. Gesundes Gewebe soll somit nicht oder zumindest weniger angegriffen werden.

Die beiden Forscher gehen davon aus, dass vor allem diejenigen Patienten am besten auf die Immuntherapie reagieren, die eine große Anzahl an T-Zellen mit der optimalen Bindungsstärke aufweisen. In den kommenden Jahren soll diese Hypothese an Patienten nachverfolgt und geprüft werden. „Je mehr wir über die Funktionsweise der T-Zellen und den Einfluss der Bindungsstärke auf ihre Effektivität wissen, umso gezielter können Fehler gefunden und Immuntherapien verbessert werden“, erklärt Speiser die Vision seiner Forschungsarbeit.

Legende zur Abbildung:
Jeder Mensch hat eine immense Anzahl von T-Zellen, jede mit einem eigenen T-Zell-Rezeptor (TZR; dargestellt in den verschiedenen Farben). Der TZR befähigt die T-Zelle, ein bestimmtes Virus oder einen anderen Krankheitserreger zu erkennen und somit alle Körperzellen zu zerstören, die vom entsprechenden Erreger befallen sind. Auch Krebszellen können von bestimmten T-Zellen erkannt und zerstört werden. Mit der neuen Strategie der Professoren Rufer und Speiser können die besten T-Zellen identifiziert (A) und so die Ursachen für Therapieerfolge und -misserfolge besser untersucht werden. Eine sehr spezialisierte Therapie ist der „Adoptive T-Zell-Transfer“. Dafür werden sehr große Mengen T-Zellen eines Patienten im Inkubator gezüchtet und danach in die Blutbahn injiziert. Diese Behandlung kommt vor allem für Patienten mit vorangegangen Therapiemisserfolgen zum Einsatz. Die neue Methode erlaubt es jetzt, diese Therapie zu optimieren, indem die besten T-Zellen dafür ausgewählt und genutzt werden (B).

Literaturhinweise
1. Hebeisen M, Allard M, Gannon P, Schmidt J, Speiser DE and Rufer N. Identifying individual T cell receptors of optimal avidity for tumor antigens. Front Immunol. 6:582-599. 2015
2. Gannon PO, Baumgaertner P, Huber A, Iancu EM, Cagnon L, Abed-Maillard S, Maby-El Hajjami H, Speiser DE, and Rufer N. Rapid and continued T cell differentiation into long-term effector and memory stem cells in vaccinated melanoma patients. Clin Cancer Res. 2016. Nov 21. Epub ahead of print. doi: 10.1158/1078-0432.CCR-16-1708.
3. Allard M, Couturaud B, Carretero-Iglesia L, Duong MN, Schmidt J, Monnot G, Romero P, Speiser DE, Hebeisen M, and Rufer N. TCR-ligand dissociation rate is a robust and stable biomarker of CD8 T cell potency. JCI Insight. 2017. July 20;2(14). pii: 92570. doi: 10.1172/jci.insight.92570. Epub ahead of print.

Kontaktdaten
Prof. Dr. Daniel Speiser
Universität Lausanne | Departement für Onkologie
Chemin des Boveresses 155 | CH-1066 Epalinges-Lausanne | Schweiz
Tel: +41 21 314 01 82 | Daniel.Speiser@unil.ch

Förderung der medizinischen Forschung
Die Wilhelm Sander-Stiftung hat dieses von Prof. Dr. Daniel Speiser ins Leben gerufene Forschungsprojekt mit rund 200.000 Euro unterstützt. Ihr Stiftungszweck ist die Förderung der medizinischen Forschung, insbesondere von Projekten im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden insgesamt über 225 Millionen Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Damit ist die Wilhelm Sander-Stiftung eine der bedeutendsten privaten Forschungsstiftungen im deutschen Raum. Sie ging aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Weitere Informationen zur Stiftung: http://www.wilhelm-sander-stiftung.de/

Bernhard Knappe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics