Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode visualisiert die Sprache von Nervenzellen

17.12.2015

Dr. Gáspár Jékely und sein Team vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen haben siGOLD entwickelt, ein Verfahren, das eine dreidimensionale Rekonstruktion verschiedener Nervenzellen und ihrer Kommunikation im Zellverbund ermöglicht. Goldpartikel, die an Antikörper gekoppelt sind, färben neuronale Signalmoleküle, die nur in bestimmten Nervenzelltypen vorkommen. siGOLD kombiniert diese molekularen Informationen mit hochauflösenden Bildern aus der Elektronenmikroskopie, um besser zu verstehen, wie Nervenzellen vernetzt sind.

Wissenschaftler versuchen schon lange zu verstehen, wie das Nervensystem funktioniert. Dazu müssen sie wissen, wie einzelne Nervenzellen miteinander verbunden sind. Eine Möglichkeit besteht darin, einen neuronalen Schaltplan zu erstellen, das so genannte Konnektom.


Elektronenmikroskopbild einer Platynereislarve. Von einer solchen Larve wurden 5.000 Gewebeschnitte angefertigt und mittels siGOLD analysiert.

Réza Shahidi /Max-Planck-Institut für Entwicklungsbiologie


Rekonstruierte Neuronen in einer Platynereislarve.Die Neuropeptide in diesen Zellen wurden mit siGOLD identifiziert. Jede Farbe repräsentiert ein Neuropeptid.

Réza Shahidi /Max-Planck-Institut für Entwicklungsbiologie

Ein Konnektom ähnelt einem elektrischen Schaltplan und enthält Informationen über die Verbindungen von Neuronen (Axone und Dendriten) und wie diese über Synapsen miteinander in Verbindung stehen. Nerven kommunizieren nicht nur über elektrische Signale, sondern auch über Signalmoleküle, so genannte Neuropeptide und Neurotransmitter, die von einer Nervenzelle zur anderen übertragen werden. Die Signalmoleküle werden von verschiedenartigen Neuronen produziert und bestimmen, wie die Nervenzellen einander beeinflussen.

Um die Neuropeptide direkt den entsprechenden Neuronen im Konnektom zuordnen zu können, haben Jékely und sein Team eine neue, hochauflösende und schnelle Methode entwickelt. Um ganze neuronale Schaltkreise zu rekonstruieren, müssen sehr dünne Gewebeschnitte des Nervengewebes im hochauflösenden Elektronenmikroskop (EM) dargestellt werden. Die Kombination der Einzelschnitte erlaubt, den Neuronen durch die Schnitte hindurch zu folgen.

Die Wissenschaftler haben kleine Neuropeptide identifiziert, die sich für die EM eignen. Diese Neuropeptide kommen im ganzen Nervensystem vor, wobei jedes charakteristisch für eine bestimmte Art von Neuronen ist. Die Forscher synthetisierten Antikörper, die gezielt nur ein Neuropeptid erkennen. Diese Antikörper sind mit Goldpartikel gekoppelt, die die Neuropeptide als schwarze Punkte in den EM-Schnitten sichtbar machen.

Die Wissenschaftler färbten verschiedene Schnitte mit unterschiedlichen Antikörpern, um verschiedene Neurone zu markieren. Die neue Methode haben die Forscher siGOLD (kurz für „serial-multiplex Immunogold“) getauft. siGOLD erlaubt die vollständige dreidimensionale Rekonstruktion von Nervenzellen und ihren Zellverbänden

Jékelys Gruppe arbeitet mit winzigen Larven des marinen Plancktons Platynereis dumerilii, einer Borstenwurm-Art. „Die Größe spielt eine wichtige Rolle“, so Jékely, „Platynereis ist ungefähr 12.000 mal kleiner als ein Mäusehirn, sodass wir das neuronale Netzwerk der Larve durch serielle EM sehr viel schneller rekonstruieren können“.

Neuropeptide sind in Tieren weit verbreitet und wichtig für die Funktion des Nervensystems. Daher ist siGOLD auch für andere Organismen eine geeignete Methode. “Wir sind zuversichtlich, dass das siGOLD-Verfahren auch bei anderen Organismen anwendbar ist”, sagt Reza Shahidi, Erstautor der Studie. „Viele Neuropeptide der Platynereis-Larve, wie zum Beispiel Enkephalin, kommen auch in den Nervensystemen anderer Organismen vor.”
siGOLD macht es möglich, dass hochauflösende EM-Bilder und die Information, mit welchen Signalmolekülen einzelne Nervenzellen kommunizieren, verknüpft werden.

Zur Methode
Um zu verstehen, wie das Nervensystem funktioniert, brauchen Wissenschaftler nicht nur genaue Kenntnisse der Anatomie der Nervenverbindungen, sondern müssen auch wissen, welche Moleküle von jeder Nervenzelle eines Konnektoms ausgeschüttet werden. Synapsen, also die Verbindungsstellen zwischen zwei Nervenzellen, liegen im Nanometerbereich. Mittels hochauflösender Elektronenmikroskopie kann man solche Nervenverbindungen erkennen.

Für die EM muss das Nervengewebe fixiert und in Plastik-Harz eingebettet werden. Dieses wird mit einer Diamantklinge in sehr dünne, meist nur 40 nm breite Scheiben geschnitten. Von jedem Schnitt wird dann ein sehr hoch aufgelöstes Bild aufgenommen, in dem man alle Membranen und Synapsen erkennen kann. Kombiniert man später die Schnitte, kann man den Nervenzellen durch alle Schnitte hindurch folgen und so eine 3D-Rekonstruktion des gesamten neuronalen Schaltplans erstellen. Réza Shahidi, Erstautor der Studie, hat 5.000 einzelne Schnitte einer kompletten Larve des marinen Borstenwurms Platynereis dumerilii analysiert. Bis zu diesem Zeitpunkt wissen die Forscher noch nicht, mit welchen Signalmolekülen die verbundenen Nervenzellen kommunizieren.

Der Nachteil bisheriger Verfahren, mit denen Neuropeptide sichtbar gemacht werden können, liegt darin, dass die Auflösung oft unzureichend ist. Außerdem sind für die Expression von bestimmten Markern gentechnische Methoden nötig. Dadurch können nur wenige unterschiedliche Marker eines einzelnen Organismus analysiert werden.

Jékely und seine Arbeitsgruppe identifizierten eine Reihe von Neuropeptiden, die die Fixierung und Aufbereitung für die Elektronenmikroskopie unbeschadet überstehen. Diese Antikörper sind mit winzigen Goldpartikeln verbunden, die das Anfärben einzelner Nervenzellen erst ermöglichen. Jékely und sein Team haben 11 unterschiedliche Antikörper verwendet und konnten so über 80 verschiedene Nervenzellen rekonstruieren.

Originalpublikation:
Réza Shahidi, Elizabeth A. Williams, Markus Conzelmann, Albina Asadulina, Csaba Verasztó, Sanja Jasek, Luis A. Bezares-Calderón and Gáspár Jékely: A Serial Multiplex Immunogold Labeling Method for Identifying Peptidergic Neurons in Connectomes. Veröffentlicht December 15, 2015
Cite as eLife 2015;10.7554/eLife.11147
DOI: http://dx.doi.org/10.7554/eLife.11147
http://elifesciences.org/content/early/2015/12/15/eLife.11147

Ansprechpartner:
Gáspár Jékely
Max-Planck-Institut für Entwicklungsbiologie
Tel.: 07071 601-1310
E-Mail: gaspar.jekely@tuebingen.mpg.de

Nadja Winter (Pressereferentin)
Tel.: 07071 601-444
Mail: presse-eb@tuebingen.mpg.de

Über uns:
Das Max-Planck-Institut für Entwicklungsbiologie betreibt Grundlagenforschung auf den Gebieten der Biochemie, Molekularbiologie, Genetik sowie Zell- und Evolutionsbiologie. Es beschäftigt rund 360 Mitarbeiterinnen und Mitarbeiter und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für Entwicklungsbiologie ist eines der 83 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Der Max-Planck-Campus Tübingen beherbergt die Max-Planck-Institute für Entwicklungsbiologie, biologische Kybernetik und Intelligente Systeme/Standort Tübingen sowie das Friedrich-Miescher-Laboratorium. Insgesamt arbeiten und forschen rund 900 Personen auf dem Campus.

Weitere Informationen:

http://elifesciences.org/content/early/2015/12/15/eLife.11147

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Erste SARS-CoV-2-Genome aus Österreich veröffentlicht
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Die Mimik der Mäuse
03.04.2020 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge

03.04.2020 | Energie und Elektrotechnik

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics