Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Karriere für lebenswichtiges Biomolekül möglich

24.08.2010
Forschende des Paul Scherrer Instituts und der Universität Basel ändern gezielt die magnetischen Eigenschaften des Porphyrinmoleküls – zahlreiche Anwendungen denkbar

Porphyrin, das als Teil des Hämoglobins im menschlichen Organismus den Sauerstofftransport im Blut möglich macht, könnte in leicht veränderter Form in Zukunft auch in technischen Geräten Verwendung finden.

Baut man in ein Porphyrinmolekül ein Kobaltatom ein, funktioniert dieses wie eine winzige Kompassnadel und passt sich an die Magnetisierungsrichtung einer Unterlage an, auf der das Molekül befestigt ist. Nun haben Forschende des Paul Scherrer Instituts PSI und der Universität Basel gezeigt, dass sich diese Eigenschaft chemisch ein- und ausschalten lässt, so dass das Molekül als winziger Schalter dienen könnte.

Auch wenn diese Arbeiten zunächst Grundlagenforschung sind, so lassen sich schon heute unterschiedlichste Anwendungen vorstellen – etwa in magnetischen Datenspeichern oder gar Quantencomputern. Über ihre Ergebnisse berichten die Forschenden am 24. August in der Fachzeitschrift Nature Communications.

Hämoglobin bindet im menschlichen Körper den Sauerstoff und transportiert ihn im Blut dahin, wo er benötigt wird. Das Hämoglobinmolekül besteht aus vier Porphyrinmolekülen, die je ein Eisen-Atom enthalten, an das sich der Sauerstoff binden kann. Doch Porphyrinmoleküle können auch interessante magnetische Eigenschaften haben, wie Experimente an Molekülen gezeigt haben, in denen ein Kobaltatom statt des Eisens eingebaut war. Das Kobaltatom verhält sich dabei wie ein winziger Magnet – die Physiker sagen, es hat ein magnetisches Moment. Befestigt man das Molekül auf einer magnetisierten Oberfläche, passt sich die Ausrichtung des magnetischen Moments an die Magnetisierungsrichtung der Oberfläche an – das Molekül funktioniert wie ein winziger magnetischer Schalter. Das haben Forschende des Paul Scherrer Instituts PSI bereits 2005 gezeigt.

Magnetismus zum Ausschalten

Nun hat dieselbe Arbeitsgruppe vorgeführt, dass sich wiederum diese magnetische Schaltfähigkeit chemisch ein- und ausschalten lässt. Die Kobaltatome werden unmagnetisch, wenn sie sich mit einem Stickstoffmonoxidmolekül (chemisch: NO) verbinden. Löst man das Stickstoffmonoxid durch Erwärmen wieder ab, wird das Kobalt wieder magnetisch. „Bisher haben wir dabei ein grosses Kollektiv an Molekülen betrachtet.“ erzählt Nirmalya Ballav, von dem die Idee für die Experimente stammt, „Aufgrund unserer Ergebnisse kann man sich aber vorstellen, dass man auch einzelne Prozesse an einzelnen Molekülen auslösen kann.“ Das ist interessant für zukünftige magnetische Datenspeicher: Um ein Bit zu speichern würde man dann die beiden Zustände „reagiert auf Magnetisierung“ und „reagiert auf Magnetisierung nicht“ eines einzelnen Moleküls oder einer kleinen Molekülgruppe nutzen. Durch Erwärmen kann so ein Speicher wieder gelöscht werden. Da ein einzelnes Molekül nur etwa einen Nanometer gross ist, könnte man so Daten wesentlich dichter speichern als es heutzutage möglich ist.

Zukunftsweisende Ideen

Es sind aber auch Anwendungen in vielen anderen Bereichen denkbar – so könnte man mit den Porphyrinmolekülen eventuell die für Quantencomputer benötigten ungewöhnlichen quantenphysikalischen Zustände erzeugen. Sie könnten aber auch helfen, Vorgänge in Spintronik-Bauteilen zu verstehen, die eine immer grössere Rolle in elektronischen Geräten wie etwa in Leseköpfen für Festplatten finden. Ein anderer Gedanke ist, Glas mit solchen Porphyrinmolekülen zu beschichten und zu nutzen, dass man diese Moleküle und damit auch ihre optischen Eigenschaften gezielt verändern kann. Dass solche Moleküle das Aussehen verändern können, je nachdem ob sie mit einer weiteren Substanz verbunden sind oder nicht, kennen wir auch aus dem Alltag: ist das Porphyrin in unserem Blut mit Sauerstoff verbunden, sind unsere Lippen rot – sonst sind sie blau. „Um zu wissen, welche Anwendungen sich tatsächlich verwirklichen lassen, wird man noch etwa zehn Jahre warten müssen.“ dämpft der Thomas Jung, Leiter der Gruppe molekulare Nanowissenschaft am PSI und Titularprofessor an der Universität Basel, übertriebene Erwartungen und erklärt „Wir forschen im Hinblick auf zukünftige Technologien, aber ich weiss noch nicht, welche Technologie auf der Basis dieses neuen Effektes, dieser neuen Art Magnetismus zu steuern, entstehen wird.“

Der Versuch

In ihrem Versuch haben die Forschenden die Porphyrinmoleküle auf einer magnetisierten Nickeloberfläche aufgebracht. Dabei konnten sie beobachten, dass sich die Ausrichtung der magnetischen Momente der Kobaltatome an die Magnetisierungsrichtung des Nickels anpasste – auch wenn man das Nickel ummagnetisiert hat. Hat man die Schicht mit Stickstoffmonoxid behandelt, verschwand der Effekt – das Kobalt wurde unmagnetisch. Durchgeführt wurden die Messungen mit Synchrotronlicht an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts. Hier ist es nicht nur möglich, die Magnetisierung eines Materials zu messen, sondern auch zu bestimmen, von welchem chemischen Element sie stammt. So lässt sich unterscheiden, ob die beobachtete Magnetisierung vom Nickel oder vom Kobalt stammte.

Das Team

Dorota Chylarecka und Kathrin Müller (Physikerinnen) und Christian Wäckerlin (Nanowissenschaftler) haben die Experimente als Doktorierende des Schweizerischen Nationalfonds mit Unterstützung des Argovia-Netzwerks “Nanotechnologie“ des Kantons Aargau durchgeführt. Cristian Iacovita hat an der Universität Basel die für dieses Projekt nötige Kompetenz in der Rastertunnelmikroskopie an solchen Molekülen entwickelt. Frithjof Nolting und Armin Kleibert sind für die Strahllinie an der Synchrotron Lichtquelle Schweiz SLS verantwortlich, an der die Experimente durchgeführt wurden. Sie sind Experten für die atomsortenspezifische Analyse der Magnetisierung.

Von Nirmalya Ballav, einem Physiko-Chemiker aus Indien, der lange Jahre an der Universität Heidelberg gearbeitet hat, stammt die Idee für das Experiment, welches die Kombination von Kompetenzen des PSI und der Forschungsgruppe von Thomas Jung im nationalen Forschungsnetzwerk des Swiss Nanoscience Instiute (SNI) in idealer Weise nutzte.

Text: Paul Piwnicki

Über das PSI

Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1300 Mitarbeitenden und einem Jahresbudget von rund 260 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Über das SNI

Das Swiss Nanoscience Institute (SNI) geht aus dem 2001 gegründeten nationalen Forschungsschwerpunkt (NFS) Nanowissenschaften hervor und bildet einen universitären Forschungsschwerpunkt. Im SNI wird grundlegende mit anwendungsorientierter Forschung verknüpft. Innerhalb verschiedener Projekte beschäftigen sich die Forschenden mit Strukturen im Nanometerbereich. Sie geben Impulse für Lebenswissenschaften, Nachhaltigkeit, Informations- und Kommunikationstechnologie. Das Departement Physik der Universität Basel fungiert als Leading House und koordiniert das Netzwerk aus Hochschul- und Forschungsinstituten und Industriepartnern sowie das vom Kanton Aargau 2006 initiierte Argovia-Netzwerk.

Kontakt:
Prof. Dr. Thomas Jung, Labor für Mikro- und Nanotechnologie, Paul Scherrer Institut, 5232 Villigen PSI, Tel. +41 (0) 56 310 45 18, E-Mail: Thomas.Jung@psi.ch [Deutsch, Englisch]

Dr. Nirmalya Ballav, Labor für Mikro- und Nanotechnologie, Paul Scherrer Institut, 5232 Villigen PSI, Tel. +41 (0) 56 310 45 59, E-Mail: nirmalya.ballav@psi.ch [Englisch]

Dr. Paul Piwnicki, Abteilung Kommunikation, Paul Scherrer Institut, 5232 Villigen PSI, Tel. +41 (0) 56 310 29 40, E-Mail: paul.piwnicki@psi.ch [Deutsch, Englisch]

Originalveröffentlichungen:

Controlling spins in adsorbed molecules by a chemical switch, Christian Wäckerlin, Dorota Chylarecka, Armin Kleibert, Kathrin Müller, Cristian Iacovita, Frithjof Nolting, Thomas A. Jung & Nirmalya Ballav, Nature Communications, 24 August, doi: 10.1038/ncomms1057

Induced magnetic ordering in a molecular monolayer, A. Scheybal, T. Ramsvik, R. Bertschinger, M. Putero, F. Nolting and T.A. Jung, Chem. Phys. Lett. 411, 214–220 (2005), doi:10.1016/j.cplett.2005.06.017

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Konzept für neue Technik zur Untersuchung superschwerer Elemente vorgestellt
13.07.2020 | Johannes Gutenberg-Universität Mainz

nachricht Alternativmethoden für Tierversuche: VISION – Ein mikrofluidisches Chipsystem als Alternative zu Tierversuchen
13.07.2020 | Fraunhofer-Institut für Biomedizinische Technik IBMT

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Konzept für neue Technik zur Untersuchung superschwerer Elemente vorgestellt

13.07.2020 | Biowissenschaften Chemie

Alternativmethoden für Tierversuche: VISION – Ein mikrofluidisches Chipsystem als Alternative zu Tierversuchen

13.07.2020 | Biowissenschaften Chemie

Neue Molekülbibliothek hilft bei der systematischen Suche nach Wirkstoffen

13.07.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics