Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Hoffnung bei Leukämie: Heilen Medikamente gegen Osteoporose und Rheuma auch Blutkrebs?

01.09.2015

Das Immunsystem ist entscheidend bei der Entstehung von Krebs. Denn ein Tumor wächst nur, wenn entartete Zellen dem Immunsystem entkommen. Wie es etwa Leukämiezellen gelingt, die körpereigene Abwehr zu überlisten, hat eine Arbeitsgruppe um den Tübinger Mediziner Helmut Salih untersucht: Um sich zu schützen, benutzen Blutkrebszellen bestimmte Eiweißmoleküle, die das Immunsystem lahmlegen.

Durch Modulation dieser speziellen Eiweiße können die Tübinger Forscher jetzt das Immunsystem im Blut stärken – dabei helfen bestimmte Antikörper, die für ganz andere Krankheiten bereits zugelassen sind, etwa Osteoporose oder Rheuma. Sie könnten zukünftig Leukämiepatienten das Leben retten.

Das Immunsystem gilt als neuer Hoffnungsträger in der Krebsbehandlung – erst 2013 kürte das Forschungsmagazin Science die Immuntherapie als „Wissenschaftsdurchbruch des Jahres“. Auch deutsche Forscher tragen immer mehr Erkenntnisse zu den Mechanismen der Immunabwehr bei Krebs bei.

Das Team von Helmut Salih am Universitätsklinikum Tübingen hat jetzt gezeigt, wie Leukämiezellen die körpereigene Abwehr austricksen – und dabei einen Weg gefunden, wie diese Erkenntnisse für die Behandlung von Leukämiepatienten verwendet werden könnten.

Dazu hatten die Tübinger Forscher ganz bestimmte Komponenten des Immunsystems im Visier, die natürlichen Killerzellen, NK-Zellen. Sie spielen als erste Verteidigungslinie des Immunsystems vor allem bei Blutkrebs eine Rolle.

Aber erst in den letzten Jahren sind die Mechanismen, durch welche NK Zellen entartete Blutzellen erkennen und abtöten, besser verstanden worden. Heute weiß man, dass die Aktivität der NK-Zellen durch eine Balance aus aktivierenden und hemmenden Eiweißmolekülen, auch Rezeptoren genannt, reguliert wird.

Gleichzeitig ist aus anderen Studien inzwischen klar, dass ein Tumor, um wachsen zu können, eine Umgebung braucht, die mitspielt. Diese freundliche Umgebung schafft sich der Krebs selbst - Forscher nennen das die „Tumor-Wirt-Interaktion“.

Ein Trick der Tumorzellen ist es dabei, aktive NK-Zellen lahmzulegen, wenn diese zur Abwehr anrücken. So entkommen die Krebszellen den Killerzellen und können sich weiter unbehelligt vermehren.

Die Wissenschaftler rund um Helmut Salih haben sich auf dieses Wechselspiel der Tumor- und NK-Zellen konzentriert. Sie hatten dabei vor allem eine bestimmte Gruppe von Rezeptoren im Blick, die zur Molekülfamilie der Tumor-Nekrose-Faktoren (TNF) gehören, genannt CD137, GITR, RANK und BAFFR, und die entsprechenden Liganden.

Dabei gelang es den Forschern nicht nur, das Zusammenspiel zwischen Tumor und Immunsystem besser zu verstehen. Die Tübinger experimentierten gleichzeitig damit, die speziellen Eiweißmoleküle der Tumorzellen, welche die NK-Zellen hemmen, mit sogenannten Antikörpern zu blockieren.

Natürliche Antikörper können an fremde Stoffe und Eindringlinge, etwa Bakterien, binden und diese neutralisieren. Sobald das geschieht, reagiert der Körper mit einer Immunantwort, um die Eindringlinge zu beseitigen: Im Blut werden die NK- und anderen Killerzellen aktiv.

Um nun trotz der hemmenden Eiweißmoleküle eine Immunreaktion gegen die Tumorzellen hervorzurufen, arbeitete das Team rund um Helmut Salih mit Antikörpern, die für ganz andere Krankheiten zugelassen sind, etwa für Knochenerkrankungen wie Osteoporose, oder rheumatische Erkrankungen wie Lupus erythematodes. Dabei handelt es sich um eine Rheumaform, die das Bindegewebe angreift.

Im Blut von Patienten mit Leukämie testeten die Wissenschaftler im Labor, wie die bereits anwesenden, aber vom Tumor gelähmten Killerzellen reagieren, wenn die Antikörper dazu kommen. Der Gruppe gelang es dabei, zwei vielversprechende Kandidaten zu finden: Denosumab, ein Antikörper, der für die Behandlung von Osteoporose, sowie Belimumab, welches bei Lupus erythematodes eingesetzt wird. Beide sind seit Jahren erprobt, aber auf ihre Eignung für eine Immuntherapie von Krebs bisher nicht getestet worden.

In den Tübinger Untersuchungen führten diese Antikörper im Blut von Leukämie-Patienten jetzt dazu, dass die zuvor abgeschalteten Abwehrzellen aktiv wurden: Sie griffen Leukämiezellen an und vernichteten sie.

Der Leiter der Gruppe, Helmut Salih, sieht darin einen wichtigen Erfolg: „Unsere Ergebnisse zeigen nicht nur einen neuen Weg auf, wie das Immunsystem gegen Krebszellen mobilisiert werden kann. Sie enthalten auch einen wichtigen Aspekt, der erst auf den zweiten Blick erkennbar ist: Diese beiden Antikörper sind bereits verfügbare Medikamente, die die schwierigen und zeitaufwändigen Schritte der Entwicklung bis zum möglichen Einsatz beim Menschen schon hinter sich haben. Jetzt haben wir sie für die Krebstherapie neu entdeckt.“

In der nächsten Stufe möchten die Tübinger Krebsforscher mit den Herstellern der Antikörper darüber verhandeln, wie diese so schnell wie möglich konkret in der Krebsbehandlung getestet werden können. Denn zwischen der Blutprobe im Labor und der Etablierung einer Behandlung von Patienten liegen noch einige Schritte.

Helmut Salih, Leiter der Gruppe, ist Professor für Translationale Immunologie und zielt besonders auf die Übertragung von Erkenntnissen aus der Grundlagenforschung in eine verbesserte Behandlung von Patienten. Sein Spezialgebiet ist die Interaktion zwischen Tumor und Immunsystem. „Wenn wir auf molekularer Ebene Zusammenhänge und Mechanismen untersuchen ergeben sich oft vielversprechende Ergebnisse. Der Schritt vom Labor in die Klinik, um diese dann auch für den Patienten nutzbar zu machen, ist aber ein Nadelöhr, denn dieser Übergang ist sehr langwierig und teuer. Wir arbeiten also vor allem daran, diesen Prozess schneller zu machen, damit der Fortschritt auch beim Patienten ankommt“, sagt der Forscher.

Den Einsatz der beiden bereits bekannten Antikörper in der Krebstherapie sieht er auf jeden Fall optimistisch: „Unsere Entdeckungen ersparen uns - und vor allem den Patienten - möglicherweise bis zu 10 Jahre Zeit, die die Entwicklung und Herstellung von neuen Antikörpern meistens verschlingen. Ich persönlich würde mich auch selbst, wenn ich zum Beispiel Blutkrebs hätte und die Standardtherapie nicht anschlägt, sofort als Proband für so eine neue Studie melden. Denn ich bin sicher, dass dieser Ansatz richtig ist.“

Kontakt:
Prof. Dr. med. Helmut R. Salih, Tübingen
Klinische Kooperationseinheit Translationale Immunologie
Deutsches Konsortium für Translationale Krebsforschung (DKTK)
am Deutschen Krebsforschungszentrum (DKFZ)
Partnerstandort Tübingen, Medizinische Klinik II, UKT

Otfried-Müller-Straße 10
72076 Tübingen
Tel. +49 (7071) 2983275
Fax +49 (7071) 294391

E-Mail: helmut.salih@med.uni-tuebingen.de

Die Wilhelm Sander-Stiftung hat dieses Forschungsprojekt mit rund 560.000 Euro unterstützt. Die Stiftung geht aus dem Nachlass des Unternehmers Wilhelm Sander hervor, der 1973 verstorben ist. Stiftungszweck ist die Förderung der medizinischen Forschung, insbesondere von Projekten im Rahmen der Krebsbekämpfung. Seit Gründung wurden insgesamt über 220 Millionen Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt.

Kontakt Wilhelm Sander-Stiftung

Wilhelm Sander-Stiftung
Goethestraße 74
80336 München
Tel: +49 (89) 544 187 0
Fax: +49 (89) 544 187 20
Web: www.sanst.de

Weitere Informationen:

https://www.medizin.uni-tuebingen.de/
http://www.sanst.de

Bernhard Knappe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pharmazeuten erzielen Durchbruch bei Suche nach magensaftbeständigen Zusätzen für Medikamente
17.12.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Kommunikation zwischen neuronalen Netzwerken
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kommunikation zwischen neuronalen Netzwerken

17.12.2018 | Biowissenschaften Chemie

Beim Phasenübergang benutzen die Elektronen den Zebrastreifen

17.12.2018 | Physik Astronomie

Pharmazeuten erzielen Durchbruch bei Suche nach magensaftbeständigen Zusätzen für Medikamente

17.12.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics