Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse zur Bewegung molekularer Motoren: Mini-Transporter auf Abwegen

27.04.2012
Kinesine übernehmen in unseren Zellen eine lebenswichtige Funktion: Die kleinen Laufmaschinen transportieren entlang langer Proteinfasern wichtige Substanzen und sorgen für eine effektive Infrastruktur.
Biophysiker der Technischen Universität München (TUM) und der Ludwig Maximilians Universität München (LMU) haben nun herausgefunden, dass manche Transporter beim Laufen ähnlich wie Autos auf einer mehrspurigen Autobahn auch die Spur wechseln können. Über den molekularen Mechanismus dieses bislang nicht bekannten Phänomens berichten die Forscher in der aktuellen Ausgabe des Fachmagazins „Molecular Cell“.

Molekulare Motoren sind der Schlüssel zur Entwicklung höherer Lebewesen. Entlang langer Proteinfasern transportieren sie Proteine, Signalmoleküle, Organellen oder sogar ganze Chromosomen gezielt von einem Ort der Zelle zum anderen. Ähnlich wie Lastwagen auf Autobahnen sind ständig Tausende der kleinen Motorproteine gleichzeitig unterwegs – ein hochkoordinierter und äusserst schneller Transport. Nur mit dieser höchst effektiven Infrastruktur konnten sich größere, komplexere Zellen und vielzellige Organismen bilden – eine Fähigkeit die beispielsweise Bakterien fehlt, da diese weder molekulare Motoren noch ein Cytoskelett besitzen.

Eine besondere Klasse molekularer Motoren sind die Kinesine. Sie bestehen aus zwei miteinander verdrillten Eiweißketten. Jede Kette besitzt einen Kopf, der an der Oberfläche des Mikrotubulus andocken kann, eine Halsdomäne sowie eine Stiel- und eine Schwanzdomäne, an deren Ende die Fracht angehängt wird. Das Kinesin bewegt sich, indem es abwechselnd einen Kopf vor den anderen setzt. Das erste umfassend erforschte Kinesin ist das Kinesin-1, das eine Vielzahl von aufeinanderfolgenden Schritten ausführt ohne sich vom Mikrotubulus abzulösen. Dabei bewegt es sich auf seinem langen Weg exakt geradeaus und bleibt dabei stets auf einer einzigen Faser des Mikotubulus, der sich aus 13 röhrenförmig angeordneten Einzelfasern zusammensetzt.

Wissenschaftler um Zeynep Ökten, Arbeitsgruppenleiterin am Lehrstuhl für Biophysik der Technischen Universität München und Melanie Brunnbauer, Doktorandin am Lehrstuhl für Biophysik, haben nun erstmals demonstriert, daß Kinesine während des Transports auch ihre Spur wechseln können. Die Wissenschaftlerinnen haben die Stelle im Kinesin-Protein identifiziert, die bestimmt ob ein Kinesintyp geradeaus läuft oder sich spiralförmig bewegt. Es ist ein Strukturelement der Halsdomäne. „Ist die Halsregion stabil, haben die beiden Köpfe des Kinesins nur eine geringe Reichweite. Das Kinesin kann keine Seitenschritte machen und läuft geradeaus“, sagt Ökten. „Destabilisiert man jedoch die verantwortliche Region, vergrößert sich die Reichweite der Köpfe und das Motorprotein kann die Faser wechseln und sich spiralförmig um den Mikrotubulus herum bewegen.“

Um die neue Erkenntnis zu überprüfen bauten die Wissenschaftlerinnen bestimmte Aminosäurereste in die verantwortliche Region ein, eine Art molekularer Schalter, mit dem sie die Reichweite der beiden Köpfe regulieren können. Das Ergebnis war deutlich: Destabilisierten sie die Halsregion des Kinesin-1 Motors und vergrößerten so die Reichweite der beiden Köpfe, geriet das sonst so vorbildlich geradeaus laufende Kinesin-1 plötzlich von seiner Bahn und lief spiralförmig. Ahmten sie durch eine chemische Querverbindung eine stabile Halsregion nach, konnten sie das Protein wieder dazu bringen geradeaus zu laufen.

Kinesine
Bild: Melanie Brunnbauer / TUM

Zu den neuen Ergebnissen gelangten Ökten und Brunnbauer durch einen einzigartigen Versuchsaufbau: Sie brachten zwei 3 Mikrometer große Kunststoffperlen in eine Lösung ein und fixierten jede mit einem Laserstrahl, einer sogenannten „optischen Pinzette“. Dann legten sie in Präzisionsarbeit ein Mikrotubulusstück dazwischen. Im letzten Schritt fixierten sie ein mit Motorproteinen eines bestimmten Kinesin-Typs umhülltes weiteres Kügelchen ebenfalls mit einem Laserstrahl und setzten es vorsichtig auf den Mikrotubulus auf.

Sobald sie nun den dritten Laserstrahl deaktivierten lief das Motorprotein los und die Wissenschaftlerinnen konnten den Weg des Moleküls unter dem Mikroskop live mitverfolgen. „Auf diese Weise konnten wir erstmals die Bewegung eines Motortyps direkt beobachten“, erklärt Ökten. „Als wir zum ersten Mal die trudelnde Bewegung eines Kinesin-2 Proteins sahen, lachten wir alle – die Bewegung war so klar und deutlich, man musste einfach nur hinschauen und alle Zweifel waren verflogen.“ Dieser Versuchsaufbau erlaubt den molekularen Motoren sich frei zu bewegen und kommt so den realen Verhältnissen in der Zelle sehr viel näher als frühere Untersuchungsmethoden.

Mit dem neuen Versuchsaufbau untersuchten Ökten und Brunnbauer die Laufbahnen einer ganzen Reihe verschiedener Kinesin-2 Proteine aus unterschiedlichen Organismen – mit überraschendem Ergebnis: Entgegen der bisher in der Wissenschaft vorherrschenden Annahme, dass sich Kinesine typischer Weise geradeaus bewegen, zeigten fast alle Kinesine Spiralbewegungen, in vielfältigen Variationen. „Dies zeigt uns, dass die Spiralbewegung in der Natur keineswegs eine Ausnahme ist, sondern die Regel“, erklärt Ökten. „Man sollte sich vielmehr fragen, warum die Evolution überhaupt eine Geradeausbewegung hervor gebracht hat, wie wir sie beim Kinesin-1 beobachten können. Das ist wirklich außergewöhnlich.“ In weiteren Forschungen möchten die Wissenschaftler um Ökten und Brunnbauer den Sinn der unterschiedlichen Bewegungsarten genauer untersuchen.

Die Forschung wurde gefördert aus Mitteln der Deutschen Forschungsgemeinschaft (DFG, SFB 863). Einen besonderen Dank sprechen die Autoren in der Publikation auch Brunnbauers kleinem Sohn und dessen Babysitterin aus. Im Arbeitskreis der Biophysik an der TU München fand Melanie Brunnbauer die Flexibilität und Unterstützung, um ihre Arbeit auch nach der Geburt ihres Kindes fortzuführen. Ihre erfolgreiche Forschungsarbeit ist ein Beleg dafür, dass Familie und Beruf auch in der molekularbiologischen Forschung gut vereinbar sind – wenn die Voraussetzungen stimmen.

Originalpublikation:
Torque Generation of Kinesin Motors Is Governed by the Stability of the Neck Domain, Melanie Brunnbauer, Renate Dombi, Thi-Hieu Ho, Manfred Schliwa, und Zeynep Ökten, Molecular Cell (2012), doi:10.1016/j.molcel.2012.04.005

Kontakt:
Dr. Zeynep Ökten
Physik Department E22
Technische Universität München
James-Franck-Str. 1
85748 Garching
Tel.: +49 89 2180 75898
E-Mail: zoekten@ph.tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Risikofaktor für Darmkrebs entschlüsselt
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algen haben Gene fürs Landleben
13.07.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungsnachrichten

Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation

13.07.2018 | Informationstechnologie

Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung

13.07.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics