Neue Einblicke in die Zellteilung

Motorproteine (rot) binden an Aktinfilamente (grün) – ein erster Schritt zur physischen Teilung einer Zelle. <br><br>© MPI für Biochemie / Sven Vogel <br>

Alle Lebewesen bestehen aus Zellen, die aus der Teilung anderer Zellen hervorgegangen sind. Wie dieser wichtige Prozess im Detail funktioniert, ist noch nicht umfassend verstanden.

Wissenschaftlern am Max-Planck-Institut für Biochemie in Martinsried bei München ist es jetzt gelungen, ein minimales biologisches System zu konstruieren, das wichtige Bestandteile des Zellteilungsapparates zusammenbringt. So konnten die Forscher die biophysikalischen Mechanismen genauer unter die Lupe nehmen.

„Unser Modell könnte helfen, neue Therapien gegen Krankheiten zu entwickeln und zu testen, die auf Fehlern in der Zellteilung beruhen“, hofft Sven Vogel, Wissenschaftler am Institut. Die Ergebnisse der Studie wurden jetzt in dem neuen Fachjournal eLife veröffentlicht.

Die Forscher der Abteilung „Zelluläre und Molekulare Biophysik“ versuchen, die Strukturen einer Zelle mit Hilfe eines Baukastenprinzips zu rekonstruieren. So möchten sie die grundlegenden Mechanismen lebender Systeme Schritt für Schritt nachvollziehen. „Unsere Vision ist, immer mehr Bausteine aus natürlichen und synthetischen Biomolekülen zusammenzufügen, bis wir schließlich die Minimalversion einer Zelle vor uns haben“, sagt Petra Schwille, Direktorin am Max-Planck-Institut für Biochemie. Mit einem solchen Ansatz ist es den Wissenschaftlern jetzt gelungen, den Prozess der Zellteilung genauer zu untersuchen.

Während der Zellteilung müssen zum einen die Erbinformation und das Zellplasma korrekt auf zwei Tochterzellen verteilt werden. Zum anderen müssen die beiden neuentstandenen Zellen physikalisch voneinander getrennt werden. Ein wichtiger Bestandteil dieser Zellteilungsmaschinerie ist der Zellkortex. Diese Schicht sitzt direkt unter der Zellhülle und besteht aus einer dünnen Lage fädiger Proteinketten, sogenannter Aktinfilamente. Während des eigentlichen Teilungsvorgangs üben Motorproteine aus dem Zellinneren Kräfte auf diese Aktinfilamente aus, wodurch sich der Zellkortex zusammenzieht, die Zelle in der Mitte einschnürt und letztendlich teilt.

Die Max-Planck-Forscher haben jetzt einen künstlichen Zellkortex konstruiert, an dem sie die physikalischen Phänomene genauer untersuchen können. Hierfür haben die Wissenschaftler nur die notwendigsten Bestandteile der Zellteilungsmaschinerie kombiniert und so ein künstliches Minimalsystem geschaffen. Ein solches System kann komplexe Prozesse stark vereinfacht darstellen. In der Natur dagegen haben sich Zellen über mehrere Millionen Jahre entwickelt und wurden nicht präzise geplant und konstruiert. Dadurch seien einige Prozesse möglicherweise komplexer als sie sein müssten, so Sven Vogel. „Diese Komplexität macht es oftmals nahezu unmöglich, die Grundmechanismen im Detail zu erforschen“, sagt der Biophysiker.

Mit ihrem Minimalsystem konnten die Wissenschaftler beispielsweise zeigen, dass die Zugabe von Motorproteinen zu dem künstlichen Zellkortex eine Musterbildung auslöst. Außerdem brechen die Motorproteine einzelne Aktinfilamente auseinander und verdichten sie. Die Martinsrieder Forscher sind sich sicher, dass auch in Zukunft künstliche Minimalsysteme einen Beitrag dazu leisten werden, die Mechanismen der Zellteilung im Detail zu verstehen.
Ansprechpartner
Prof. Dr. Petra Schwille,
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2901
E-Mail: schwille@­biochem.mpg.de
Anja Konschak,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2824
Fax: +49 89 8578-3777
E-Mail: konschak@­biochem.mpg.de
Originalpublikation
S. Vogel, Z. Petrasek, F. Heinemann, P. Schwille
Myosin Motors Fragment and Compact Membrane-Bound Actin Filaments
eLife, 8. Januar 2013

Media Contact

Prof. Dr. Petra Schwille Max-Planck-Institut

Weitere Informationen:

http://www.mpg.de/6799555/zellteilung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer