Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Nervenzellen wachsen

16.02.2010
Göttinger Max-Planck-Wissenschaftler entschlüsselt einen molekularen Prozess, der das Nervenzellwachstum steuert

Der Göttinger Hirnforscher Hiroshi Kawabe hat einen bislang vollkommen übersehenen Prozess aufgeklärt, der es Nervenzellen im Gehirn ermöglicht, zu wachsen und komplexe Netzwerke zu bilden. Die jetzt in der Fachzeitschrift Neuron veröffentlichte Studie zeigt, dass ein Enzym, das eigentlich die Zerstörung von Eiweißbausteinen reguliert, in Nervenzellen eine vollkommen unerwartete Funktion hat: Es steuert den Aufbau des Zellskeletts und gewährleistet so, dass Nervenzellen ihre für die Signalübertragung im Gehirn notwendigen baumartigen Fortsätze bilden können. (Neuron, 11. Februar 2010)


Im Gehirn von Mäusen, die kein Nedd4-1 herstellen können, sind die Fortsätze von Nervenzellen kürzer und viel einfacher aufgebaut (Beispiel links) als im Gehirn normaler Mäuse (Beispiel rechts). Bild: Hiroshi Kawabe

Um Signale anderer Zellen empfangen zu können, bilden Nervenzellen komplizierte Fortsätze aus, die nach dem griechischen Begriff dendron für Baum als Dendriten bezeichnet werden. Das Wachstum von Dendriten im menschlichen Gehirn findet hauptsächlich während der späten embryonalen und frühkindlichen Hirnentwicklung statt. In dieser Phase wachsen aus den 100 Milliarden Nervenzellen unseres Gehirns Dendriten mit einer Gesamtlänge von vielen Hundert Kilometern aus. Das Endergebnis ist ein hochkomplexes Nervenzell-Netzwerk, das alle Körperfunktionen steuert - von der Atmung bis zu komplizierten Lernprozessen.

Damit diese fulminante Wachstumsphase der Hirnentwicklung nicht ins Chaos führt, muss das Auswachsen der Dendriten genau kontrolliert werden. Tatsächlich steuern zahlreiche Signalprozesse die Richtung und die Geschwindigkeit des Dendritenwachstums, indem sie den Aufbau des Zellskeletts beeinflussen, das im Inneren des auswachsenden Dendriten für dessen Form und Verlängerung verantwortlich ist.

Wie das Wachstum des Zellskeletts während der Dendritenentwicklung genau gesteuert wird, hat nun der Göttinger Hirnforscher Hiroshi Kawabe herausgefunden. Der japanische Gastwissenschaftler, der am Max-Planck-Institut für Experimentelle Medizin forscht, entdeckte an eigens entwickelten genetisch veränderten Mäusen, dass das Enzym Nedd4-1 für ein normales Dendritenwachstum unverzichtbar ist. Nedd4-1 ist ein Enzym, das eigentlich den Abbau von Eiweißbausteinen in Zellen steuert, indem es sie mit einem anderen Eiweiß namens Ubiquitin verbindet. Derart ubiquitinierte Moleküle werden von der Zelle als "Abfall" erkannt und abgebaut. In manchen Fällen jedoch führt die Ubiquitinierung nicht zum Abbau des markierten Proteins sondern verändert dessen Funktion.

Nedd4-1 verhindert Abbau des Zellskeletts

Kawabe wies nun nach, dass das Enzym Nedd4-1 ein als Rap2 bezeichnetes Signalprotein ubiquitiniert, und es so daran hindert, die Zerstückelung des Zellskeletts und den Zusammenbruch der Dendriten herbeizuführen. "Solange Nedd4-1 aktiv ist, können die Nervenzelldendriten normal wachsen", so Kawabe. "Fällt es aus, kommt das Dendritenwachstum zum Stillstand und einmal ausgebildete Dendriten fallen in sich zusammen, mit dramatischen Konsequenzen für die Funktion von Nervenzellnetzwerken im Gehirn." Allerdings gibt es wahrscheinlich eine Reihe parallel operierender Signalwege, die das Dendritenwachstum steuern. So lässt sich erklären, warum Nervenzellen auch ohne Nedd4-1 - wenn auch deutlich weniger und kürzere - Dendriten ausbilden können. Der Nedd4/Rap2/TNIK-Mechanismus wäre dann nur einer von mehreren, die einander teilweise kompensieren können.

Kawabes Entdeckung liefert einen wichtigen neuen Einblick in die Mechanismen, die die Hirnentwicklung steuern. "Eigentlich ist es überraschend, dass das bisher noch niemand untersucht hat", meint der japanische Biochemiker. Es ist nämlich schon lange bekannt, dass Nedd4-1 eines der am häufigsten vorkommenden Ubiquitinierungs-Enzyme in Nervenzellen ist und genau in der Entwicklungsphase besonders häufig erzeugt wird, in der Nervenzellen wachsen und ihre Dendriten ausbilden. Kawabe berichtet, dass die Funktion von Nedd4-1 schon in dutzenden von Studien untersucht worden sei. "Aber Arbeiten über dessen Rolle in Nervenzellen gibt es keine, obwohl sie eigentlich so nahe liegend gewesen wären."

Originalveröffentlichung:

Kawabe, H., Neeb, A., Dimova, K., Young, S.M.Jr. Takeda, M., Katsurabayashi, S., Mitkovski, M., Malakhova, O.A., Zhang, D.-E., Umikawa, M., Kariya, K., Goebbels, S., Nave, K.-A., Rosenmund, C., Jahn, O., Rhee, J.-S. and Brose, N.
Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development in cortical neurons.

Neuron 65, 358-372 (2010)

Weitere Informationen erhalten Sie von:

Dr. Hiroshi Kawabe
Max-Planck-Institut für Experimentelle Medizin, Göttingen
Tel.: +49 551 3899 720
E-Mail: kawabe@em.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biomarker besser nachweisen: Bremer Forscher entwickeln neue Methode mit Mikrokapseln
14.08.2018 | Jacobs University Bremen gGmbH

nachricht Grönland: Tiefe des Schmelzwassereintrags beeinflusst Planktonblüte
14.08.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics