Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen entdeckt, die bei Stressreaktion die Angst regulieren

11.11.2016

Ergebnis der Grundlagenforschung könnte langfristig zur Entwicklung von neuen Medikamenten gegen Angsterkrankungen führen

Wenn wir Stresssituationen ausgesetzt sind, startet das Gehirn eine Kettenreaktion, die das Herz in Alarmbereitschaft bringt, Angst und Furcht machen sich breit. Unser Körper aktiviert alles, um mit der Situation fertig zu werden – völlig unabhängig davon, ob es sich um den Angriff eines Feindes oder eine Prüfung handelt. Wie wird die Angstkomponente dieser Reaktion gesteuert?


Im Versuchsaufbau zeigte sich, dass Angst bei Mäusen in Stressituationen unterschiedlich stark ausgeprägt ist.

Tali Wiesel, Weizmann Institute of Science

Forscher am Max-Planck-Institut für Psychiatrie haben jüngst Nervenzellen in einer Hirnregion, dem “erweiterten Amygdalakomplex”, lokalisiert, die für die Regulierung unserer Furcht- und Angstreaktionen verantwortlich sind. Die Ergebnisse wurden kürzlich im renommierten Fachmagazin "Molecular Psychiatry" veröffentlicht.

Bei den meisten Menschen lassen Furcht- und Angstreaktionen rasch nach, sobald die bedrohliche Situation vorüber ist. Bei manchen jedoch bleibt die Angst bestehen; der Zustand kann chronisch werden und zu Angststörungen, Depression oder einer Posttraumatischen Belastungsstörung (PTBS) führen. Medikamente können helfen, aber meist sind sie bestenfalls partiell wirksam.

Prof. Alon Chen, Direktor am Max-Planck-Institut für Psychiatrie, und seine Mitarbeiterin Dr. Marloes Henckens suchten ausschließlich im erweiterten Amygdalakomplex, der Hirnregion, die für Furcht und Angst verantwortlich und an der Stressreaktion beteiligt ist, nach den entscheidenden Nervenzellen. Einige ihrer Zellen produzieren Rezeptoren für ein Protein, das in Stresssituationen freigesetzt wird.

„Wir bedienten uns einer Methode, mit der wir Nervenzellen an- und ausschalten können, um herauszufinden, ob und wie diese Zellen die Angstreaktion beeinflussen", erläutert Chen. Die Optogenetik genannte Methode setzt Licht zur Kontrolle der Aktivität von Nervenzellen ein. Labormäuse wurden gentechnisch so modifiziert, dass sie in bestimmten Nervenzellen im erweiterten Amygdalakomplex ein lichtempfindliches Protein produzieren. Durch die Bestrahlung mit lichtleitenden Fasern in blau oder gelb ließ sich die jeweilige Zelle an- oder ausschalten.

Beim Vergleich fanden die Wissenschaftler heraus, dass Mäuse, deren Neuronen angeschaltet waren, weniger ängstlich waren als diejenigen, bei denen die entsprechenden Neuronen abgeschaltet waren.

Um mehr zu erfahren, erhoben die Forscher die Kortisolwerte. Kortisol ist ein Hormon, das angemessene Stressreaktionen steuert. Die Forscher verglichen die Mäuse mit angeschalteten Neuronen mit einer Kontrollgruppe. Erstere hatten niedrigere Gesamtwerte und es dauerte weniger lang, bis ihre Kortisolwerte sich nach einem Stress auslösenden Ereignis normalisierten.

Durch ihre Experimente konnten die Wissenschaftler erstmals die Lage und Funktion der Neuronen ermitteln, die die Angstreaktion auf Stress innerhalb des erweiterten Amygdalakomplexes regulieren.

Zellen auch bei Entwicklung einer Posttraumatische Belastungsstörung beteiligt

Wenn diese Neuronen die Angstreaktion regulieren, dürften sie auch an der PTBS beteiligt sein. Um die näheren Zusammenhänge zu verstehen, setzten die Forscher die Mäuse einem traumatischen Ereignis aus. Anschließend wurden die Tiere in eine neue Umgebung gesetzt und an das traumatische Ereignis erinnert. Dadurch werden bei manchen Mäusen und auch bei Menschen Symptome von PTBS hervorgerufen.

Kurz nach dieser Konfrontation wurden bei einigen Mäusen die just entdeckten Nervenzellen mit Hilfe lichtleitender Fasern angeschaltet. Eine Woche später wurden alle Mäuse auf Anzeichen für PTBS getestet. In der Kontrollgruppe, in der die Zellen nicht bestrahlt worden waren, zeigten rund 42 Prozent der Mäuse PTBS-ähnliche Symptome, während nur acht Prozent derer, bei denen die Zellen angeschaltet waren, Anzeichen der Erkrankung zeigten.

"Das Anschalten dieser speziellen Neuronen verbesserte die Fähigkeit der Mäuse, sich von der traumatischen Erfahrung zu erholen und mit den Symptomen der PTBS fertig zu werden“, sagt Chen. „Die exakte Lokalisierung der beteiligten Neuronen und Rezeptoren könnte von entscheidender Bedeutung sein. Je besser wir die Mechanismen des Gehirns verstehen, die die Stressreaktion regulieren, umso besser können wir Medikamente entwickeln, mit denen wir Angsterkrankungen gezielter und hoffentlich auch effektiver behandeln können.“

Weitere Informationen:

http://www.psych.mpg.de/2225510/pm1572-stressreaktion-angst

Anke Schlee | Max-Planck-Institut für Psychiatrie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics