Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzelle vereint theoretische Modelle zur Bewegungserkennung

09.08.2016

Lichtsinneszellen reagieren, wie der Name schon sagt, auf Licht: Ist ein Bildpunkt hell, oder dunkel? Eine Bewegungsrichtung zeigt das nicht an. Diese Wahrnehmung entsteht erst im Gehirn durch vergleichende Verrechnungen benachbarter Lichtsignale. Wie diese Verrechnungen genau aussehen, darüber diskutieren Ingenieure, Physiker und Neurobiologen seit rund 50 Jahren. Nun vereinen Wissenschaftler vom Max-Planck-Institut für Neurobiologie zwei bislang als Alternativen angesehene Konzepte – auf einer einzelnen Nervenzelle im Gehirn einer Fruchtfliege.

Fliegen sind meist schwer zu fangen. Kein Wunder, denn sie investieren rund zehn Prozent ihres Gehirns dafür, Bewegungen zu erkennen und zu verarbeiten. Für die Fliege nähert sich eine Hand wie in Zeitlupe, und die Ausweichbewegung ist längst eingeleitet, bevor ernsthaft Gefahr besteht.


Wissenschaftler vereinen zwei theoretische Modelle dazu, wie Nervenzellen des Fliegenhirns aus Lichtsignalen, die nacheinander benachbarte Facetten des Auges treffen, die Bewegungsrichtung errechnen

MPI für Neurobiologie / Schorner

Wie das Fliegenhirn Bewegungen so schnell und präzise wahrnehmen und verarbeiten kann, daran forschen Wissenschaftler seit Jahrzehnten. „Nun rückt das Ziel langsam in Sicht, und wir sind nah dran, den neuronalen Schaltkreis des Bewegungssehens der Fliege vollständig zu entschlüsseln“, resümiert Alexander Borst, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie seit Langem an diesem Problem arbeitet. Jetzt haben die Wissenschaftler einen weiteren Schritt getan: Sie liefern experimentelle Daten, die zwei zuvor als alternative Theorien geltenden Ansätze vereinen.

Vor mehr als 50 Jahren wurden zwei rivalisierende theoretische Modelle entwickelt, die zu erklären versuchten, wie aus den Signalen benachbarter Bildpunkte Information über die Bewegungsrichtung errechnet werden kann. Die eine Theorie besagt, dass sich Lichtreize bei Bewegung entlang einer Richtung, der sogenannten Vorzugsrichtung, gegenseitig verstärken.

Das andere Modell nimmt dagegen an, dass sich Lichtreize entlang der entgegengesetzten Richtung, der sogenannten Nullrichtung, gegenseitig unterdrücken. In beiden Fällen würde so ein schwach richtungsselektives Signal entstehen, welches anschließend noch nachbearbeitet und verstärkt werden müsste. „Interessanterweise haben wir aber gefunden, dass bereits die ersten Zellen, die auf Bewegungsreize reagieren - die sogenannten T4- und T5-Zellen - eine stark ausgeprägte Richtungsselektivität zeigen“, berichtet Alexander Borst.

Um diesen Widerspruch zu den beiden Modellen zu untersuchen, verfeinerten die Neurobiologen einen Versuchsaufbau, sodass sie nacheinander einzelne funktionelle Kolumnen des Fliegenhirns stimulieren und die Antworten der richtungsselektiven T4-Zellen aufnehmen konnten. Die Messungen und auch die entsprechenden Computersimulationen waren eindeutig:

T4-Zellen verstärken die Eingangssignale, wenn diese entlang ihrer Vorzugsrichtung laufen, und unterdrücken sie, wenn sie entlang der Nullrichtung laufen. In den T4-Zellen des Fliegengehirns sind somit beide vorgeschlagenen Mechanismen realisiert: aus dem ‚Entweder-oder‘ wurde ein ‚Sowohl-als-auch‘. „Kein Wunder, dass diese Zellen so präzise zwischen den Bewegungsrichtungen unterscheiden können“, meint Jürgen Haag, der Erstautor der Studie. „Die Lösung der Natur ist komplizierter als die bislang vorgeschlagenen Modelle.“

Für die Computersimulationen dieses kombinierten Mechanismus benötigten die Martinsrieder Forscher drei verschiedene Eingangssignale zu den T4-Zellen. Interessanterweise erhalten T4-Zellen aber Eingangssignale von vier anderen Zellen. Dies lässt vermuten, dass der vierte, bisher noch ungeklärte Eingangskanal auf die T4-Zellen eine weitere Überraschung für die endgültige Berechnung bereithält. „Welche Informationen die T4-Zellen über diesen vierten Kanal erhalten, das wollen wir jetzt natürlich auch noch wissen“, beschreibt Alexander Borst den nächsten Schritt. „Dann haben wir erstmals gezeigt, wie in einem neuronalen Netzwerk aus einzelnen Bildpunkten die Information über die Bewegungsrichtung errechnet wird.“

ORIGINALVERÖFFENTLICHUNG
Jürgen Haag, Alexander Arenz, Etienne Serbe, Fabrizio Gabbiani und Alexander Borst
Complementary Mechanisms Create Direction Selectivity in the Fly
eLife, online am 9. August 2016. DOI: http://dx.doi.org/10.7554/eLife.17421

KONTAKT:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-mail: merker@neuro.mpg.de

Prof. Dr. Alexander Borst
Abteilung Schaltkreise – Information – Modelle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3251
Email: borst@neuro.mpg.de

Weitere Informationen:

http://dx.doi.org/10.7554/eLife.17421 - DOI zur Publikation in eLife
http://www.neuro.mpg.de/borst/de - Webseite der Abteilung von Prof. Alexander Borst

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht „Science“-Artikel: Bruchstelle verlangsamt Blutzucker-Stoffwechsel
04.08.2020 | Philipps-Universität Marburg

nachricht Saatguttresor Global Seed Vault startet 100-jähriges Langzeitexperiment mit IPK-Proben
04.08.2020 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lastenfahrräder: Leichtbaupotenziale erkennen und nutzen

Lastenräder sind »hipp« und ein Symbol für klimafreundliche Mobilität, tagtäglich begegnen wir ihnen. Straßen und Radwege müssen an diese neue Fahrzeugkategorie angepasst werden. Aber nicht nur die Infrastruktur kann optimiert werden, Lastenräder selbst bieten noch reichlich Potenzial. Im neu gestarteten Projekt »LastenLeichtBauFahrrad« (L-LBF) suchen Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF zusätzliche Leichtbaupotenziale dieser urbanen Vehikel. Über die Fortschritte des Projekts informiert eine eigene Webseite unter www.lbf.fraunhofer.de/L-LBF 

Form und Design von Lastenfahrrädern variieren von schnittig schick bis kastig oder tonnig. Sie stellen das neue Statussymbol der »mittleren Generation« dar....

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: Künstliche Intelligenz & Einzelzellgenomik: Neue Software sagt das Schicksal einer Zelle vorher

Die Erforschung der Zelldynamik ermöglicht einen tieferen Einblick in die Entstehung und Entwicklung von Zellen sowie ein besseres Verständnis von Krankheitsverläufen. Wissenschaftler des Helmholtz Zentrums München und der Technischen Universität München (TUM) haben „scVelo“ entwickelt – eine auf maschinellem Lernen basierende Methode und Open-Source-Software, welche die Dynamik der Genaktivität in einzelnen Zellen prognostizieren kann. Damit können die Forscher den künftigen Zustand einzelner Zellen vorhersagen.

Herkömmliche Verfahren für die Einzelzellsequenzierung erlauben es, Erkenntnisse über Unterschiede und Funktionen auf zellulärer Ebene zu gewinnen - allerdings...

Im Focus: Perseiden: Die Sternschnuppen-Sommernächte im August

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg -In diesem Jahr wird der Sternschnuppenstrom der Perseiden am Vormittag des 12. August seinen Höhepunkt erreichen. In den Nächten vom 11. auf den 12. und vom 12. auf den 13. August geht der Mond nach Mitternacht auf, so dass die späten Abendstunden nicht vom Mondlicht aufgehellt werden - ideal um nach den Perseiden Ausschau zu halten. Man blickt dazu in Richtung Osten, wo das Sternbild Perseus aufgeht, nach dem diese Sternschnuppen benannt wurden.

Der Hochsommer ist die Zeit der Sternschnuppen: Schon ab Mitte bis Ende Juli tauchen die ersten Sternschnuppen der Perseiden am Himmel auf, die aus dem dem...

Im Focus: Mit dem Lego-Prinzip gegen das Virus

HZDR-Wissenschaftler*innen erhalten millionenschwere Förderung für Corona-Forschung

Um die Corona-Pandemie zu bewältigen, stattet der Freistaat Sachsen ein Forschungsteam um Prof. Michael Bachmann vom Helmholtz-Zentrum Dresden-Rossendorf...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

Städte als zukünftige Orte der Nahrungsmittelproduktion?

29.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Science“-Artikel: Bruchstelle verlangsamt Blutzucker-Stoffwechsel

04.08.2020 | Biowissenschaften Chemie

Fraunhofer IPT und Partner setzen Standards für Augmented-Reality-Anwendungen in der Produktion

04.08.2020 | Informationstechnologie

Saatguttresor Global Seed Vault startet 100-jähriges Langzeitexperiment mit IPK-Proben

04.08.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics