Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018

Elementares Protein des Zellskeletts ist bei Parasiten anders aufgebaut/ Ansatzpunkt für mögliche neue Therapie gegen Malaria-Infektionen

Malaria-Parasiten der Gattung Plasmodium bewegen sich zehnmal schneller durch die Haut als Immunzellen, deren Aufgabe es eigentlich wäre, derartige Krankheitserreger einzufangen. Heidelberger Wissenschaftler fanden nun heraus, warum der Parasit schneller ist als seine Gegenspieler. Der Grund liegt im Aktin, einem für die Struktur und Fortbewegung von Zellen wichtigen Protein, das im Parasiten anders aufgebaut ist als in Säugetieren.


Mücken (links) injizieren Malaria-Parasiten (oben Mitte). Diese bewegen sich schnell (unten Mitte), indem sie ein Protein verwenden, das auch in Säugetieren (unten rechts) vorkommt: Aktin (rechts).

Universitätsklinikum Heidelberg, ZMBH, HITS

Die Erkenntnisse von Ross Douglas und seinen Kollegen vom Zentrum für Infektiologie (Bereich Parasitologie) am Universitätsklinikum Heidelberg, dem Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) und dem Heidelberger Institut für Theoretische Studien (HITS) verändern nicht nur das Verständnis einer Schlüsselkomponente aller lebenden Zellen, sondern liefern auch Informationen, die bei der Entdeckung von Arzneimitteln helfen könnten.

Wie schafft es der Malaria-Parasit, sich so extrem schnell zu bewegen?

Wie Legosteine, die sich zu langen Ketten zusammenfügen lassen, wird Aktin zu langen seilartigen Strukturen, den Filamenten, zusammengesetzt. Diese Filamente sind wichtig für die richtige Funktion der Zellen, zum Beispiel in Muskelzellen, um jede unserer Bewegungen zu ermöglichen. Sie dienen aber auch dazu, dass sich Zellen des Immunsystems bewegen und eindringende Krankheitserreger einfangen können. Ebenso sind sie von großer Bedeutung für die Bewegung des Malariaparasiten.

„Seltsamerweise bewegen sich Malariaparasiten zehn Mal flinker als die schnellsten unserer Immunzellen und übertreffen unsere Abwehrkräfte buchstäblich. Wenn wir diesen wichtigen Bewegungsunterschied verstehen, können wir den Parasiten gezielt angreifen und stoppen“, sagt Dr. Ross Douglas vom Heidelberger Zentrum für Infektiologie. Eine Schlüsselfrage der Arbeit, die aktuell in der Fachzeitschrift „PLOS Biology“ veröffentlicht wurde, ist daher, warum sich die Geschwindigkeit, mit der Aktinfilamente auf- und abgebaut werden, zwischen Parasiten und Säugetieren unterscheidet.

Zwitter aus parasitärem und Säugetierprotein brachten neue Erkenntnisse

Bekannt war, dass das Parasiten-Protein in bestimmten Abschnitten anders als das klassische Aktin der Säugetiere aufgebaut ist. Um dem Geschwindigkeitsunterschied auf die Spur zu kommen, ersetzten die Wissenschaftler daher Teile des parasitären Proteins im Labor durch entsprechende Proteinabschnitte aus Säugetier-Aktin.

„Als wir diese Veränderungen in dem Parasiten machten, bemerkten wir, dass einige Parasiten gar nicht überleben konnten, während andere plötzlich zögerten, wenn sie sich bewegten“, sagt Dr. Ross Douglas. Um den zugrundeliegenden Mechanismus zu untersuchen, haben die beteiligten Wissenschaftler Experimente und Simulationen von der Modellierung auf molekularer Ebene bis hin zur Beobachtung der Parasiten in lebenden Tieren durchgeführt.

„Um zu beobachten, wie sich die Struktur und Dynamik der Aktinfilamente durch den Austausch einzelner Abschnitte verändert, waren Computerressourcen mit hoher Leistungsfähigkeit notwendig“, sagt Prof. Dr. Rebecca Wade, die sowohl am Heidelberger Institut für Theoretische Studien (HITS) als auch am Zentrum für Molekulare Biologie (ZMBH) der Universität Heidelberg Arbeitsgruppen zur Erforschung der Wechselwirkungen von Proteinen mit Hilfe von Computersimulationen und mathematischen Modellen leitet.

Diese Ergebnisse könnten jetzt verwendet werden, um chemische Verbindungen zu entdecken, die selektiv auf das Parasiten-Aktin zielen, und entweder den Auf- oder den Abbau der Filamente beeinflussen. „Auf diese Weise könnte es möglich werden, den gesamten Parasiten effektiv zu stoppen“, fasst Dr. Ross Douglas zusammen.

Vorbild für dieses Vorgehen ist das Tubulin, ein anderer Proteintyp, der über die sogenannten Mikrotubuli ebenfalls am Aufbau des Zellskeletts beteiligt ist. Medikamente wie Mebendazol, die auf parasitäre Mikrotubuli zielen, werden seit Jahrzehnten erfolgreich zur Behandlung von Menschen und Tieren gegen parasitäre Würmer eingesetzt. Gefördert wurde das gemeinsame Forschungsprojekt unter anderem durch den Innovationsfonds Fund FRONTIER der Universität Heidelberg.

Über das Universitätsklinikum und die Medizinische Fakultät Heidelberg

Das Universitätsklinikum Heidelberg ist eines der bedeutendsten medizinischen Zentren in Deutschland; die Medizinische Fakultät Heidelberg der Universität Heidelberg zählt zu den international renommierten biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung innovativer Diagnostik und Therapien sowie ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 13.000 Mitarbeiterinnen und Mitarbeiter und engagieren sich in Ausbildung und Qualifizierung. In mehr als 50 klinischen Fachabteilungen mit fast 2.000 Betten werden jährlich rund 65.000 Patienten vollstationär, 56.000 mal Patienten teilstationär und mehr als 1.000.000 mal Patienten ambulant behandelt. Gemeinsam mit dem Deutschen Krebsforschungszentrum und der Deutschen Krebshilfe hat das Universitätsklinikum Heidelberg das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg etabliert, das führende onkologische Spitzenzentrum in Deutschland. Das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. Derzeit studieren ca. 3.700 angehende Ärztinnen und Ärzte in Heidelberg. www.klinikum-heidelberg.de

Über das HITS

Das Heidelberger Institut für Theoretische Studien (HITS) wurde 2010 von dem Physiker und SAP-Mitgründer Klaus Tschira (1940-2015) und der Klaus Tschira Stiftung als private, gemeinnützige Forschungseinrichtung ins Leben gerufen. Das HITS betreibt Grundlagenforschung in den Naturwissenschaften, der Mathematik und der Informatik. Dabei werden große, komplexe Datenmengen verarbeitet, strukturiert und analysiert und computergestützte Methoden und Software entwickelt. Die Forschungsfelder reichen von der Molekularbiologie bis zur Astrophysik. Die HITS Stiftung, eine Tochter der Klaus Tschira Stiftung, stellt die Grundfinanzierung der HITS gGmbH auf Dauer sicher. Die Mittel dafür erhält sie von der Klaus Tschira Stiftung. Gesellschafter des HITS sind neben der HITS Stiftung die Universität Heidelberg und das Karlsruher Institut für Technologie (KIT). Das HITS arbeitet außerdem mit weiteren Universitäten und Forschungsinstituten sowie mit industriellen Partnern zusammen. Die wichtigsten externen Mittelgeber sind das Bundesministerium für Bildung und Forschung (BMBF), die Deutsche Forschungsgemeinschaft (DFG) und die Europäische Union. www.h-its.org/de/

Wissenschaftliche Ansprechpartner:

Dr. Ross Douglas
Zentrum für Infektiologie
Bereich Parasitologie
Tel. +49 6221-56-6546
E-Mail: ross.douglas@med.uni-heidelberg.de

Prof. Dr. Rebecca Wade
Molecular and Cellular Modeling Group
Heidelberger Institut für Theoretische Studien (HITS)
Und:
Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg
Tel. +49 6221-533 247
E-mail: rebecca.wade@h-its.org

Originalpublikation:

Ross G. Douglas, Prajwal Nandekar, Julia-Elisabeth Aktories, Hirdesh Kumar, Rebekka Weber, Julia M. Sattler, Mirko Singer, Simone Lepper, S. Kashif Sadiq, Rebecca C. Wade, Friedrich Frischknecht.. Inter-subunit interactions drive divergent dynamics in mammalian and Plasmodium actin filaments, PLOS Biology, July 16, 2018 https://doi.org/10.1371/journal.pbio.2005345

Julia Bird | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Unordnung in der Leber
23.10.2018 | Max-Planck-Institut für Biochemie

nachricht Bonobos: Menschenaffen mit "hohen Tönen"
23.10.2018 | Max-Planck-Institut für evolutionäre Anthropologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gravitationswellen die Dunkle Materie ausleuchten

Schwarze Löcher stossen zusammen, Gravitationswellen breiten sich durch die Raumzeit aus - und ein riesiges Messgerät ermöglicht es, die Struktur des Universums zu erkunden. Dies könnte bald Realität werden, wenn die Raumantenne LISA ihren Betrieb aufnimmt. UZH-Forschende zeigen nun, dass LISA auch Aufschluss über die schwer fassbaren Partikel der Dunklen Materie geben könnte.

Dank der Laserinterferometer-Raumantenne (LISA) können Astrophysiker Gravitationswellen beobachten, die von Schwarzen Löchern ausgesendet werden. Diese...

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Lehren und Lernen mit digitalen Medien im Fokus

22.10.2018 | Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Innovatives Raumluftsystem reduziert Keimbelastung in Krankenhäusern

23.10.2018 | Medizin Gesundheit

Planeten und Asteroiden wiegen

23.10.2018 | Physik Astronomie

Was die Zelle entarten lässt

23.10.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics