Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Naturstoffe einfacher untersuchen: Bakterienforscher entwickeln verbesserte DNA-Technik

30.04.2012
Gezielter Griff nach dem gesuchten Gen

Zielgerichteter Austausch von DNA-Abschnitten statt mühsamer Suche: Deutsche und chinesische Wissenschaftler haben eine Technik zur direkten Isolierung von Erbinformation aus komplexen Gemischen verschiedener Bakterienarten entwickelt.

Bestimmte Stoffe, die von Bakterien produziert werden und die beispielsweise als Antibiotika oder Chemotherapeutika medizinisch genutzt werden können, lassen sich mit Hilfe der neuen Methode leichter im Labor herstellen. Die Forscher beschreiben diese neu entwickelte Technik jetzt in der Fachzeitschrift Nature Biotechnology. (DOI: 10.1038/nbt2183).

Die Methode ist eine gemeinsame Entwicklung von Wissenschaftlern des Helmholtz-Instituts für Pharmazeutische Forschung Saarland (HIPS) – einer Außenstelle des Helmholtz-Zentrums für Infektionsforschung (HZI) – sowie des Biotechnologischen Zentrums der Technischen Universität Dresden, des College of Life Science in Hunan/China und der Firma Gene Bridges in Heidelberg. Beteiligt waren die Arbeitsgruppen von Prof. Rolf Müller, Prof. Francis Stewart und Dr. Youming Zhang.

Neben dem primären Stoffwechsel, der beispielsweise die Grundlagen des Energiehaushaltes und der Vermehrung beinhaltet, verfügen Bakterien noch über eine Vielzahl sekundärer Stoffwechselwege. Die Produkte dieser Stoffwechselwege brauchen die Bakterien nicht unbedingt zum Überleben, aber sie dienen ihnen zur besseren Anpassung an ihren Lebensraum. Viele dieser sekundären Stoffwechselprodukte sind pharmazeutisch nutzbare Substanzen. Sie lassen sich zum Beispiel als Antibiotika oder Chemotherapeutika einsetzen. Zur Charakterisierung und Untersuchung auf eine mögliche medizinische Wirksamkeit müssen Forscher zunächst größere Mengen dieser Stoffe herstellen und isolieren. Ihre Gewinnung aus den Bakterien ist aber in der Regel schwierig, weil die genauen Bedingungen, unter denen die Sekundärstoffe produziert werden, meist unbekannt sind. Daher isolieren die Wissenschaftler häufig die betreffenden Bakterien-Gene, welche für die Produktion der gesuchten Substanz zuständig sind, und übertragen diese in einen leicht kultivierbaren Bakterienstamm, der die Substanz dann im Erfolgsfall herstellt.

Bislang nutzten Wissenschaftler hierzu sogenannte DNA-Bibliotheken, die das gesamte Erbgut eines Organismus in Bruchstücken enthalten. Nach Erstellen der Bibliothek mussten die Forscher sie nach dem Kandidaten-Gen durchsuchen. War das Gen in vollständiger Form vorhanden, mussten sie es in ein spezielles Transfer-DNA-Molekül einbauen und in die Zielbakterien übertragen. Für Naturstoffe ergibt sich ein zusätzliches Hindernis: „Häufig sind für die Herstellung der Sekundärstoffe recht viele Gene notwendig, sogenannte Gencluster. Deren Isolierung machte große Schwierigkeiten“, erklärt Rolf Müller, Geschäftsführender Direktor des HIPS und Leiter der Abteilung Mikrobielle Naturstoffe.

In Zeiten der Hochdurchsatzsequenzierung sind die vollständigen Erbgutsequenzen vieler Bakterien bereits bekannt – und damit theoretisch auch tausende Stoffwechselwege für Sekundärstoffe. Durch die nun beschriebene Methode der sogenannten direkten DNA-Klonierung lassen sich die Gene für die Sekundärstoffbildung gezielt isolieren und weiterverarbeiten. Der langwierige Umweg über eine DNA-Bibliothek entfällt.

Die beteiligten Wissenschaftler Xiaoying Bian vom HIPS und Jun Fu vom Biotechnologischen Zentrum der Technischen Universität Dresden sowie ihre Forscher-Kollegen verbesserten dazu die patentierte Technik der homologen Rekombination: Bestimmte Enzyme können dazu genutzt werden, einen Gen-Abschnitt gegen einen anderen, ähnlich aufgebauten Abschnitt auszutauschen. „Ist die Abfolge der Bausteine am Anfang und Ende eines näher zu untersuchenden Gens bekannt, kann – vereinfacht gesagt – ein ähnlich aufgebauter DNA-Abschnitt konstruiert und enzymatisch ausgetauscht werden“, erläutert Francis Stewart.

Diese Methode ist im Prinzip nicht neu. Allerdings waren die bislang verwendeten Enzyme Redα und Redβ nicht effektiv genug, um diesen Ansatz für die Isolierung großer DNA-Abschnitte und die anschließende Herstellung von Naturstoffen im Labor zu nutzen. Die Forscher haben jetzt entdeckt, dass sich bestimmte Varianten der beiden Enzyme RecE und RecT hierfür weitaus besser eignen als Redα und Redβ.

„Die verbesserte direkte Klonierung erleichtert und verkürzt es ungemein, interessante Sekundärstoffe zu isolieren und zu charakterisieren“, sagt Xiaoying Bian, einer der Erstautoren der Studie vom HIPS. „Der große Aufwand, eine DNA-Bibliothek zu erstellen und zu durchsuchen, entfällt jetzt.“ HIPS-Direktor Rolf Müller ergänzt: „Weil viele krankheitserregende Bakterien mittlerweile Resistenzen gegen die gängigen Antibiotika entwickelt haben, ist die Entdeckung von neuen Substanzen im Kampf gegen Infektionen von enormer Bedeutung. Der von uns genutzte Ansatz ermöglicht es, mit Hilfe der mittlerweile von vielen Mikroorganismen verfügbaren Genomsequenzen zielstrebig nach neuen Substanzen zu suchen.“

Mit der vereinfachten Methode haben die Forscher bereits mehrere Gencluster aus dem Leuchtbakterium Photorhabdus luminescens auf direktem Wege in Escherichia coli-Bakterien transferiert. Dabei identifizierten sie die beiden bisher unbekannten Sekundärstoffe Luminmycin A und Luminmide A/B.
Obwohl die jetzt veröffentlichte Studie zunächst nur die Möglichkeiten der Methode veranschaulicht, macht sie auch Hoffnung auf neue, als Antibiotika nutzbare Naturstoffe und damit auf Fortschritte bei der Bekämpfung von Infektionskrankheiten.

Publikation:
Jun Fu, Xiaoying Bian, Shengbaio Hu, Hailong Wang, Fan Huang, Philipp M Seibert, Alberto Plaza, Liqiu Xia, Rolf Müller, A Francis Stewart & Youming Zhang (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning and bioprospecting, Nature Biotechnology, DOI: 10.1038/nbt2183

Pressekontakt
Birte Urban-Eicheler
Pressesprecherin Biotechnologisches Zentrum der TU Dresden
Tel.: 0351/ 463-40347
E-Mail: birte.urban-eicheler@crt-dresden.de

Prof. Dr. rer. nat. A. Francis Stewart
Professor für Genomik am Biotechnologischen Zentrum der TU Dresden
Tel.: 0351/ 463-40129
E-Mail: francis.stewart@biotec.tu-dresden.de

Das BIOTEChnologische Zentrum (BIOTEC) wurde 2000 als zentrale wissenschaftliche Einrichtung der Technischen Universität Dresden mit dem Ziel gegründet, modernste Forschungsansätze in der Molekular- und Zellbiologie mit den in Dresden traditionell starken Ingenieurswissenschaften zu verbinden. Innerhalb der TU Dresden nimmt das BIOTEC eine zentrale Position in Forschung und Lehre mit dem Schwerpunkt „Molecular Bioengineering und Regenerative Medizin“ ein. Es trägt damit entscheidend zur Profilierung der TU Dresden im Bereich moderner Biotechnologie und Biomedizin bei. Die Forschungsschwerpunkte der internationalen Arbeitsgruppen bilden die Genomik, die Proteomik, die Biophysik, zelluläre Maschinen, die Molekulargenetik, die Gewebezüchtung und die Bioinformatik.

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mecha-nismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. www.helmholtz-hzi.de

Das Helmholtz-Institut für Pharmazeutische Forschung Saarland:
Das Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) ist eine Außenstelle des Helmholtz- Zentrums für Infektionsforschung (HZI) in Braunschweig und wurde gemeinsam mit der Universität des Saarlandes im Jahr 2009 gegründet. Wo kommen neue nachhaltige Wirkstoffe gegen weit verbreitete Infektionen her, wie kann man diese für die Anwendung am Menschen optimieren und wie werden sie am besten durch den Körper zum Wirkort transportiert? Auf diese Fragen suchen die Forscher am HIPS mit modernsten Methoden der pharmazeutischen Wissenschaften Antworten. www.helmholtz-hzi.de/HIPS

Birte Urban-Eicheler | Technische Universität Dresden
Weitere Informationen:
http://www.helmholtz-hzi.de/HIPS
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Blut dank neuer Technik
14.12.2018 | Medizinische Hochschule Hannover

nachricht Neue Chancen für den Tierschutz: Effizientes Testverfahren zum Betäubungsmittel-Einsatz bei Fischen
14.12.2018 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

Show Time für digitale Medizin-Innovationen

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Krankheiten entstehen, wenn das Netzwerk von regulatorischen Autoantikörpern aus der Balance gerät

14.12.2018 | Medizin Gesundheit

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungsnachrichten

Cohesin treibt die Alterung von Blutstammzellen voran

14.12.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics