Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel gezielt zum Tumor lenken: HZDR-Forscher spüren Krebszellen mit maßgeschneiderten Materialien auf

24.02.2020

Moderne Behandlungsmethoden in der Onkologie zielen darauf ab, Tumorzellen gezielt anzugreifen und dabei das gesunde Gewebe zu schonen. Ein interdisziplinäres Forscherteam vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) und der FU Berlin kann auf diesem Gebiet wichtige Fortschritte vorweisen: Die Wissenschaftler haben winzige Nanopartikel hergestellt, die regelrecht auf bestimmte Krebszellen abgerichtet sind. Sie können die Tumorzellen aktiv ansteuern und in bildgebenden Verfahren sichtbar machen. Sowohl in der Petrischale als auch im Tiermodell ließen sich die Nanoteilchen effektiv zum Tumor lenken. Perspektivisch lässt sich das neue Verfahren mit therapeutischen Ansätzen koppeln.

Ausgangspunkt für die HZDR-Forscher sind winzige bioverträgliche Nanopartikel aus sogenannten dendritischen Polyglycerolen, die als Trägermoleküle dienen. „Diese Partikel können wir modifizieren und verschiedene Funktionen einführen“, erläutert Dr. Kristof Zarschler, wissenschaftlicher Mitarbeiter am HZDR-Institut für Radiopharmazeutische Krebsforschung.


„Wir bringen beispielweise auf dem Partikel ein Antikörperfragment an, das spezifisch an die Oberfläche von Krebszellen bindet. Dieses Antikörperfragment ist unsere zielsuchende Einheit, denn es leitet die Nanopartikel zu den Krebszellen.“

Im Fadenkreuz der modifizierten Nanopartikel befindet sich ein Antigen, das als EGFR (Epidermaler Wachstumsfaktor-Rezeptor) bekannt ist. Dieses Protein wird bei bestimmten Krebsarten wie etwa Brustkrebs oder Kopf-Hals-Tumoren im Übermaß produziert – die Zellen präsentieren es zuhauf auf ihrer Oberfläche.

„Wir konnten nachweisen, dass unsere Nanopartikel durch das verwendete Antikörperfragment bevorzugt mit diesen Krebszellen interagieren“, bestätigt Dr. Holger Stephan, Gruppenleiter „Nanoskalige Systeme“ am HZDR. „In Kontrollversuchen mit gleichartigen Nanopartikeln, die jedoch mit einem unspezifischen Antikörper beladen waren, reicherten sich deutlich weniger Nanopartikel an den Tumorzellen an.“

Intensiv untersuchten die Wissenschaftler das Verhalten der Nanopartikel sowohl in Zellkulturen als auch im Tiermodell. Dazu verliehen sie den Nanopartikeln zusätzlich Reporter-Eigenschaften, wie Kristof Zarschler erläutert: „Wir haben dabei zwei sich ergänzende Möglichkeiten genutzt. Auf den Nanopartikeln haben wir neben dem Antikörper ein Farbstoff-Molekül sowie ein Radionuklid angebracht. Das Farbstoff-Molekül fluoresziert im Nah-Infrarot, sodass das emittierte Licht sogar durchs Gewebe dringt und unter einem entsprechenden Mikroskop sichtbar wird. Damit verrät uns der Farbstoff, wo die Nanopartikel genau sind.“

Das Radionuklid, Kupfer-64, hat einen ähnlichen Zweck. Es sendet Strahlung aus, die Detektoren eines PET-Geräts (Positronen-Emissions-Tomographie) registrieren. Aus den Signalen lässt sich anschließend ein dreidimensionales Bild erstellen, das die Verteilung der Nanopartikel im Organismus sichtbar macht.

Vorteilhafte Eigenschaften im lebenden Organismus

Mit diesen bildgebenden Verfahren konnten die Forscher beispielsweise zeigen, dass bei Mäusen zwei Tage nach Gabe der Nanopartikel eine maximale Anreicherung im Tumorgewebe erreicht wird. Anschließend werden die markierten Nanoteilchen über die Niere wieder ausgeschieden, ohne den Körper zu belasten. „Sie haben offenbar optimale Größe und Eigenschaften“, sagt Holger Stephan.

„Kleinere Teilchen sind schon nach wenigen Stunden aus dem Blutkreislauf gefiltert und können daher nur kurze Zeit wirken. Wenn die Partikel hingegen zu groß sind, werden sie in Milz, Leber oder Lunge angereichert und nicht mehr über Niere und Blase aus dem Körper entfernt.“

Im Zusammenspiel der Nanopartikel – die exakt drei Nanometer groß sind – und angehefteten Antikörperfragmenten lassen sich offenbar die Verteilung und Verweildauer des Antikörpers im Organismus sowie dessen Ausscheidungsweg positiv beeinflussen.

In künftigen Experimenten wollen die HZDR-Forscher testen, ob sich ihr Trägersystem mit anderen Komponenten ausstatten lässt. Kristof Zarschler beschreibt die Pläne:

„Man kann diese Nanopartikel beispielsweise mit einem Wirkstoff beladen. Das würde uns erlauben, ein Arzneimittel ganz gezielt zum Tumor zu bringen. Dabei könnte es sich beispielsweise um ein therapeutisches Radionuklid handeln, das die Tumorzellen zerstört.“

Denkbar ist auch, die Nanopartikel mit anderen zielsuchenden Antikörperfragmenten auszustatten, um weitere Tumorarten ins Fadenkreuz zu nehmen.

Publikation:
K. Pant, C. Neuber, K. Zarschler, J. Wodtke, S. Meister, R. Haag, J. Pietzsch, H. Stephan: Active targeting of dendritic polyglycerols for diagnostic cancer imaging, in Small, 2019 (DOI: 10.1002/smll.201905013)

Weitere Informationen:
Dr. Holger Stephan | Dr. Kristof Zarschler
Institut für Radiopharmazeutische Krebsforschung am HZDR
Tel.: +49 351 260-3091 | -3678
E-Mail: h.stephan@hzdr.de | k.zarschler@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel.: +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Bautzner Landstr. 400, 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 170 Doktoranden.

Wissenschaftliche Ansprechpartner:

Dr. Holger Stephan | Dr. Kristof Zarschler
Institut für Radiopharmazeutische Krebsforschung am HZDR
Tel.: +49 351 260-3091 | -3678
E-Mail: h.stephan@hzdr.de | k.zarschler@hzdr.de

Originalpublikation:

K. Pant, C. Neuber, K. Zarschler, J. Wodtke, S. Meister, R. Haag, J. Pietzsch, H. Stephan: Active targeting of dendritic polyglycerols for diagnostic cancer imaging, in Small, 2019 (DOI: 10.1002/smll.201905013)

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics