Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanomaterialen: Wie man Ringe von Ketten trennt

06.12.2017

Was ist der Unterschied zwischen einer langen Kette und einem Ring aus dem gleichen Material? Die molekulare Zusammensetzung ist identisch, jedoch besitzen beide Strukturen von einem mathematischen Standpunkt aus gesehen unterschiedliche Topologien – ringförmig und linear. Dieser Unterschied ist auf makroskopischer Ebene ohne Probleme erkennbar. Wie aber Nano- und Mikromoleküle aus dem gleichen Material unterschieden werden können, haben die PhysikerInnen Lisa Weiss und Christos Likos von der Universität Wien sowie Arash Nikoubashman von der Johannes-Gutenberg-Universität Mainz untersucht. Die Ergebnisse öffnen den Weg zu neuen Materialien.

Die "rein mathematische Eigenschaft" – linear oder ringförmig – kann weitreichende Folgen in der Welt der Materialphysik haben. Da ringförmige Moleküle kein freies, angreifbares Ende besitzen, sind diese widerstandsfähiger und weniger verschränkt als lineare Ketten.


Die einzelnen grünen Punkte repräsentieren die anziehenden Stellen im Kanal, Ringe sind in rot dargestellt, lineare Ketten in blau. Dazu indiziert ein Pfeil, die Rollbewegung der Ringe.

Copyright: Lisa Weiß


Dem Team um Lisa Weiß ist es gelungen, chemisch identische Makromoleküle voneinander zu trennen.

Copyright: Oleg Domanov

Das nutzt die Natur beispielsweise im Fall von RNA und DNA um zu vermeiden, dass diese Moleküle abgebaut werden: Dabei hängen nicht nur biologische Funktionen von dem kleinen Unterschied Ring oder Kette ab, sondern auch im fließenden Zustand zeigen beide Strukturen und deren Mischungen ein deutlich unterschiedliches Verhalten.

Dieses Phänomen zeigt sich etwa auch beim Umrühren eines Topfes mit Spaghetti, die hier eine Analogie für lineare Moleküle sind: Einzelne Nudeln beginnen sich teilweise in Flussrichtung auszurichten, dennoch bleiben sie stark verschlungen. Wird ringförmige Pasta verwendet, man kann sich diese Pasta als Spaghetti mit zusammengeklebten Enden vorstellen, die weniger verschränkt ist, so ist eine Ausrichtung in Flussrichtung einfacher und der Topf mit Pasta lässt sich leichter umrühren.

Allerdings kann man eine Mischung beider Strukturen auch im Kochtopf nicht leicht in hoher Reinheit voneinander trennen, da die zu Grunde liegenden Bausteine aus dem gleichen Material aufgebaut sind. Beide Nudeltopologien bestehen aus dem gleichen Teig: Ein Versuch, die zwei Strukturen durch chemische Methoden zu trennen, ist hoffnungslos.

So muss jede Nudel einzeln herausgefischt werden um zu unterscheiden, ob es eine ringförmige Nudel oder ein Spaghetto ist. Da ein solcher Prozess auf mikroskopischer Ebene nicht möglich ist, ist die Entwicklung neuer Materialien sowie die Analyse der Topologie von biologischen Molekülen ohne neue Trennungsverfahren schwierig.

Die ForscherInnen der Universität Wien und der Johannes-Gutenberg-Universität Mainz haben nun eine automatisierbare Strategie entwickelt, die ringförmige Moleküle sehr zuverlässig von ihrem linearen Gegenstück trennt. In Computersimulationen zeigten sie, dass mikroskopische Kanäle mit Stellen, die die einzelnen Bausteine von Ketten und Ringen gleichermaßen anziehen, geeignet sind, um Ringe von Ketten zu trennen. "Dabei werden lineare Ketten immobilisiert, wo hingegen Ringe 'rollen'.

Diese Rollbewegung ist nur für die Ringtopologie möglich, da sie eine geschlossene Konturlinie besitzen", erklärt Lisa Weiß vom Institut für Computergestützte Physik an der Universität Wien. Um den Filter schließlich von den dort haftenden Ketten zu reinigen, spülten die WissenschafterInnen sie mit einer Flüssigkeit, in der die Polymere nicht löslich sind, wie beispielsweise Öl in Wasser, einfach ab. Dadurch zieht sich die Kette zusammen und ändert ihre Form von einem Stäbchen zu einem Tröpfchen, welches nicht mehr an der flachen Wand kleben kann. Der Fluss reißt das Tröpfchen schließlich einfach mit und der Filter ist gereinigt.

Das Projekt wurde durch die EU-Initiative Horizon 2020 im Rahmen des Marie-Skłodowska-Curie-Netzwerks Nanotrans gefördert.

Publikation in ACS Macro Letters:
Lisa B. Weiss, Arash Nikoubashman und Christos N. Likos: Topology-Sensitive Microfluidic Filter for Polymers of Varying Stiffness. In Macro Letters (2017)
http://dx.doi.org/10.1021/acsmacrolett.7b00768

Weitere Infos zu Nanotrans: http://www.etn-nanotrans.eu/index.php

Wissenschaftliche Kontakte
Univ.-Prof. Dipl.-Ing. Dr. Christos Likos
Computergestützte Physik
Universität Wien
1090 Wien, Sensengasse 8/13
T +43-1-4277-732 30
M +43-664-60277-732 30
christos.likos@univie.ac.at
https://comp-phys.univie.ac.at/research/research-likos/

Lisa Weiß, MSc
Computergestützte Physik
Universität Wien
1090 Wien, Sensengasse 8/15
T +43-1-4277-732 23
lisa.weiss@univie.ac.at

Rückfragehinweis
Stephan Brodicky
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 41
stephan.brodicky@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.500 MitarbeiterInnen, davon 6.600 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit 174 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Weitere Informationen:

http://dx.doi.org/10.1021/acsmacrolett.7b00768

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nonstop-Transport von Frachten in Nanomaschinen
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Wie sich ein Kristall in Wasser löst
20.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics