Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanomaterial hilft Sonnenenergie zu speichern: effizient und kostengünstig

18.07.2017

Neues Katalysator-Material für Elektrolyseure bewährt sich im Praxistest

Damit Sonnen- und Windenergie in Form von Wasserstoff gespeichert werden können, werden effiziente Elektrolyseure benötigt. Dank eines neuen Materials, das Forschende des Paul Scherrer Instituts PSI und der Empa entwickelt haben, dürften diese Geräte in Zukunft günstiger und effizienter werden.


Nanopartikel eines Perowskits, die als effizienter Katalysator in einem Elektrolyseur eingesetzt wer ...

Foto: Paul Scherrer Institut/Emiliana Fabbri


Die Forschenden Emiliana Fabbri und Thomas Schmidt in einem Labor am PSI, an dem sie die Leistungsfähigkeit des neuentwickelten Katalysators für Elektrolyseure untersucht haben.

Foto: Paul Scherrer Institut/Mahir Dzambegovic

Die Forschenden haben auch gezeigt, wie sich das neue Material zuverlässig in grossen Mengen herstellen lässt, und seine Leistungsfähigkeit in einer technischen Elektrolysezelle, der Hauptkomponente eines Elektrolyseurs, nachgewiesen.

Da Sonnen- und Windenergie nicht jederzeit verfügbar sind, können sie nur dann einen wesentlichen Beitrag zur Energieversorgung leisten, wenn sie effizient gespeichert werden können. Ein vielversprechender Weg ist die Speicherung in Form von Wasserstoff. Dazu wird in einem Elektrolyseur mithilfe von Strom, der aus Sonnen- oder Windenergie gewonnen wurde, gewöhnliches Wasser in Wasserstoff und Sauerstoff aufgespalten.

Der Wasserstoff dient dann als Energieträger – er kann in Tanks gespeichert und später zum Beispiel mithilfe von Brennstoffzellen wieder in elektrische Energie umgewandelt werden. Das kann unmittelbar an den Orten geschehen, an denen der Strom gebraucht wird: in Wohnhäusern oder in Brennstoffzellenfahrzeugen, die eine Mobilität ganz ohne CO2-Ausstoss ermöglichen würden.

Kostengünstig und effizient

Forschende des Paul Scherrer Instituts PSI haben nun ein neues Material entwickelt, das in Elektrolyseuren als Katalysator die Aufspaltung der Wassermoleküle, den ersten Schritt der Erzeugung von Wasserstoff, beschleunigt. „Es gibt heute zwei Typen von Elektrolyseuren auf dem Markt: Die einen sind effizient, aber teuer, weil deren Katalysatoren unter anderem Edelmetalle wie Iridium enthalten. Die anderen sind günstiger, aber weniger effizient“, erklärt Emiliana Fabbri, Forscherin am Paul Scherrer Institut. „Wir wollten einen effizienten Katalysator entwickeln, der zudem günstig ist, weil er ohne Edelmetalle auskommt.“

Dabei haben die Forschenden auf ein eigentlich schon bekanntes Material zurückgegriffen: eine komplexe Verbindung der Elemente Barium, Strontium, Kobalt, Eisen und Sauerstoff – ein sogenannter Perowskit. Sie haben aber als Erste ein Verfahren entwickelt, mit dem er sich in Form von winzigen Nanopartikeln erzeugen lässt. Nur so kann er effizient wirken, denn ein Katalysator benötigt eine möglichst hohe Oberfläche, an der viele reaktive Zentren die elektrochemische Reaktion beschleunigen. Macht man die einzelnen Partikel des Katalysators möglichst klein, addieren sich deren Oberflächen zu einer umso grösseren Gesamtoberfläche.

Für die Herstellung des Nanopulvers nutzten die Forschenden ein sogenanntes Flame-Spray-Gerät, das von der EMPA betrieben wird. In diesem Gerät werden die Bestandteile des Materials gemeinsam durch eine Flamme geschickt, vermischen sich dabei und erstarren schnell zu kleinen Partikeln, sobald sie die Flamme verlassen. „Die Herausforderung war, das Gerät so zu betreiben, dass die Atome der einzelnen Elemente zuverlässig in der richtigen Struktur zusammenfinden“, betont Fabbri. „Zusätzlich konnten wir noch den Sauerstoffgehalt gezielt variieren und so verschiedene Varianten des Materials erzeugen.“

Im Praxistest erfolgreich

Die Forschenden haben gezeigt, dass ihre Entwicklungen nicht nur im Laborversuch funktionieren, sondern auch wirklich praxistauglich sind. So liefert das vorgestellte Herstellungsverfahren grosse Mengen des Katalysatorpulvers und dürfte sich leicht an einen industriellen Massstab anpassen lassen. „Es war uns auch wichtig, den Katalysator selbst einem echten Praxistest zu unterziehen. Wir haben hier am PSI natürlich Messanlagen, in denen wir das Material untersuchen können, aber am Ende kommt es darauf an, wie sich das Material in einer industriellen Elektrolysezelle, wie sie in kommerziellen Elektrolyseuren eingesetzt wird, verhält“, so Fabbri. Daher testeten die Forschenden den Katalysator in Kooperation mit einem amerikanischen Hersteller von Elektrolyseuren und konnten dabei zeigen, dass das Gerät mit dem neuen Perowskit der PSI-Forscher zuverlässiger arbeitete als mit einem konventionellen Iridium-Oxid-Katalysator.

In Tausendstelsekunden untersucht

Darüber hinaus konnten die Forschenden auch genau untersuchen und nachvollziehen, was in dem neuen Material passiert, wenn es aktiv ist. Dafür durchleuchteten sie es mit Röntgenlicht an der Synchrotron Lichtquelle Schweiz SLS des PSI. Hier steht für die Forschenden ein weltweit einzigartiger Messplatz zur Verfügung, an dem sich der Zustand eines Materials in Zeiträumen von 200 Tausendstelsekunden untersuchen lässt. „So können wir verfolgen, wie sich der Katalysator während der katalytischen Reaktion verändert: Wir sehen, wie sich die elektronischen Eigenschaften oder die Anordnung der Atome ändern“, so Fabbri. „An anderen Anlagen dauert eine einzelne Messung rund 15 Minuten, sodass man dort höchstens ein gemitteltes Bild bekommt.“ Ein Ergebnis dieser Messungen ist, dass sich die Struktur an der Oberfläche der Partikel im Betrieb verändert – das Material wird zum Teil amorph, die Atome sind also in einzelnen Bereichen nicht mehr regelmässig angeordnet. Das Unerwartete an dem Ergebnis ist, dass das Material dadurch zu einem besseren Katalysator wird.

Einsatz in der ESI-Plattform

An der Entwicklung von technologischen Lösungen für die Energiezukunft der Schweiz mitzuarbeiten ist einer der wesentlichen Forschungsschwerpunkte des PSI. So stellt das PSI mit der ESI-Plattform (ESI steht für Englisch „Energy System Integration“) der Forschung und Industrie eine Versuchsplattform zur Verfügung, auf der vielversprechende Lösungsansätze in ihren komplexen Zusammenhängen getestet werden können. Der neue Katalysator ist hierbei eine wichtige Basis für die Entwicklung von Wasser-Elektrolyseuren der nächsten Generation.

Text: Paul Scherrer Institut/Paul Piwnicki


Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2100 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.

Kontakt/Ansprechpartner:
Prof. Dr. Thomas J. Schmidt
Leiter des Labors für Elektrochemie
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 57 65; E-Mail: thomasjustus.schmidt@psi.ch

Dr. Emiliana Fabbri
Forschungsgruppe Elektrokatalyse und Grenzflächen
Labor für Elektrochemie
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 27 95; E-Mail: emiliana.fabbri@psi.ch

Originalveröffentlichung:
Dynamic Surface Self-Reconstruction is the Key of Highly Active Perovskite Nano-Electrocatalysts for Water Splitting
Emiliana Fabbri, Maarten Nachtegaal, Tobias Binniger, Xi Cheng, Bae-Jung Kim, Julien Durst, Francesco Bozza, Thomas J. Graule, Robin Schäublin, Luke H. Wiles, Morgan Petroso, Nemanja Danilovic, Katherine Ayers, Thomas J Schmidt
Nature Materials 17 July 2017
DOI: 10.1038/nmat4938

Weitere Informationen:

http://psi.ch/i9No – Darstellung der Mitteilung auf der Webseite des PSI
https://www.psi.ch/media/esi-plattform – Versuchsplattform ESI: neue Wege zum Energiesystem der Zukunft

Paul Piwnicki | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blockierung des Eisentransports könnte Tuberkulose stoppen
01.04.2020 | Universität Zürich

nachricht Universität Innsbruck entwickelt neuartiges Corona-Testverfahren
01.04.2020 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

In Vorbereitung auf zu erwartende COVID-19-Patienten wappnet sich das Universitätsklinikum Augsburg mit der Beschaffung von persönlicher Schutzausrüstung für das medizinische Personal. Ein Vollgesichtsschutz entfaltet dabei in manchen Situationen eine bessere Schutzwirkung als eine einfache Schutzbrille, doch genau dieser ist im Moment schwer zu beschaffen. Abhilfe schafft eine Kooperation mit dem Institut für Materials Resource Management (MRM) der Universität Augsburg, das seine Kompetenz und Ausstattung im Bereich des 3D-Drucks einbringt, um diesen Engpass zu beheben.

Das Coronavirus SARS-CoV-2 wird nach heutigem Wissensstand maßgeblich durch Tröpfcheninfektion übertragen. Dabei sind neben Mund und Nase vor allem auch die...

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Studie mit bispezifischem Antikörper liefert beeindruckende Behandlungserfolge bei Multiplem Myelom

01.04.2020 | Medizin Gesundheit

Unternehmenswissen - Wie gelingt der Umstieg von Präsenz auf Online?

01.04.2020 | Seminare Workshops

SmartKai – „Einparkhilfe“ zur Vermeidung von Schäden an Schiffen und Hafeninfrastruktur

01.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics