Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mutter-Gen aktiv - Vater-Gen stillgelegt

18.08.2017

Erste vollständige Entschlüsselung des „Alleloms“ zeigt unerwartete Aktivitätsunterschiede der Genvarianten

Jedes Gewebe hat eine eigene Verteilung aktiver Genvarianten von Mutter oder Vater – das hat ein internationales Team von WissenschaftlerInnen am CeMM Forschungszentrum für Molekulare Medizin der ÖAW herausgefunden. Die WissenschaftlerInnen konnten zeigen, dass die unterschiedliche Genaktivität durch spezielle, gewebespezifische DNA-Regionen reguliert wird. Die Resultate, veröffentlicht in dem renommierten Open Access Journal eLife, könnten für eine Vielzahl von Krankheiten von Bedeutung sein.


Künstlerische Darstellung des Alleloms der Maus

Lip Comarella


Die Autoren der Studie Quanah Hudson, Daniel Andergassen, Denise Barlow und Florian Pauler (v.l.n.r.)

Daniel Andergassen

Jedes Gen in (fast) jeder Körperzelle ist in zwei Kopien vorhanden – eine stammt von der Mutter, die andere vom Vater. Meist sind beide Ausführungen aktiv und werden von der Zelle gebraucht. Doch ein kleiner Prozentsatz der Gene hat nur eine aktive Kopie, während die andere stillgelegt ist.

Ob das nun die väterliche oder mütterliche Variante ist, entscheidet sich früh in der Entwicklung des Embryos - auch deshalb ging man bisher davon aus, dass die Verteilung der aktiven Genvarianten in verschiedenen Geweben nahezu einheitlich ist.

Die nun veröffentlichte Studie (DOI:10.7554/eLife.25125) der ehemaligen Forschungsgruppe von Denise Barlow am CeMM, an der Daniel Andergassen, zur Zeit der Studie PhD-Student am CeMM und mittlerweile PostDoc in Harvard, als Erstautor beteiligt war, zeichnet dagegen ein anderes Bild: Das Team von WissenschaftlerInnen untersuchte alle Gene in 23 verschiedenen Geweben und Entwicklungsstadien in der Maus und entdeckte, dass in jedem Gewebe eine unterschiedliche Verteilung an Genvarianten der Mutter oder des Vaters aktiv ist.

Für ihre Versuche kreuzten die WissenschaftlerInnen zwei Mauslinien, deren DNA bereits vollständig sequenziert wurde und deren Genvarianten daher eindeutig der Mutter oder dem Vater zugeordnet werden können. In den Nachfahren der Mäuse konnten Daniel Andergassen und seine KollegInnen mit Hilfe eines speziell entwickelten Programms (Allelome.PRO) alle aktiven mütterlichen oder väterlichen Genvarianten in den unterschiedlichen Geweben bestimmen –in ihrer Gesamtheit werden sie als „Allelom“ bezeichnet.

Die WissenschaftlerInnen fanden heraus, dass sowohl genetische als auch epigenetische Unterschiede zwischen Mutter und Vater zu den gewebetypischen Aktivitätsmustern beitragen. „Unsere Ergebnisse deuten darauf hin, dass ein Großteil dieser Muster von sogenannten „Genregulatoren“ verursacht wird“, erklärt der co-senior Autor Quanah Hudson, mittlerweile am IMBA (Institut für Molekulare Biotechnologie der ÖAW). „Das sind DNA-Regionen, die in einiger Distanz zu den beobachteten Genen liegen, aber dennoch direkten Einfluss auf ihre Aktivität haben können.“

„Diese Studie zeigt zum ersten Mal ein komplettes Bild aller Gen-Aktivitäten von Mutter und Vater, es ist das erste vollständige Allelome“, so Florian Pauler, mittlerweile am IST (Institute of Science and Technology Austria) und ebenfalls co-senior Autor. „Diese Daten sind nicht nur von Bedeutung zum Verständnis grundlegender biologischer Funktionen, sondern auch bei Krankheiten in welchen das Gen an sich nicht fehlerhaft ist, jedoch deren Genregulatoren.“

Zu den gewebetypischen Mustern trugen auch Gene auf dem X-Chromosom bei, die der sogenannten „X-Inaktivierung“ entkommen. Bei der X-Inaktivierung wird eines der beiden X-Chromosomen in weiblichen Geweben abgeschaltet. Jedoch entwischen ca. 3% der Gene bei Mäusen und 15% bei Menschen dieser Abschaltung und bleiben auf beiden X-Chromosomen aktiv. In dieser Studie wurden diese sogenannten „escaper“ Gene erstmals in allen Organen identifiziert. Dabei kam heraus, dass der Anteil solcher Gene zwischen den Organen sehr unterschiedlich ist und im Muskel ein ungewöhnlich hoher Anteil von 50% der Gene der X-Inaktivierung entkommen.

Das mit dieser Studie erstellte Allelom bietet ein auch sehr detailliertes Bild der sog. „genomischen Prägung“, jenem Prozess, der zu den epigenetisch bedingten Unterschieden der Genaktivitäten führt. Von ca. 100 Genen wusste man bereits, dass sie durch genomische Prägung beeinflusst werden können – jedoch längst nicht bei allen, in welchen Geweben und Entwicklungsstadien dies stattfindet. Zu dieser Liste konnten nun 18 neue Gene hinzufügt werden. Die WissenschaftlerInnen fanden heraus, dass diese neuen Gene neben bereits bekannten geprägten Genen liegen und gemeinsam als Gruppe reguliert werden. Darunter auch das Gen Igf2r, mit dem 1991 das Prinzip der genomischen Prägung von der hochkarätigen Epigenetikerin und ehemaligen CeMM-Gruppenleiterin Denise Barlow entdeckt wurde. Giulio Superti-Furga, wissenschaftlicher Direktor des CeMM: „Ich gratuliere Denise Barlow und ihrem Team zu dieser Abschlussstudie, in der alle geprägten Gene identifiziert werden konnten.“


Bilder im Anhang: 1) Künstlerische Darstellung des Alleloms der Maus 2) Die Autoren der Studie Quanah Hudson, Daniel Andergassen, Denise Barlow und Florian Pauler (v.l.n.r.).

Die Studie „Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression“ erschien in der online-Zeitschrift eLife am 14.08.2017. DOI:10.7554/eLife.25125

Autoren: Daniel Andergassen, Christoph P Dotter, Daniel Wenzel, Verena Sigl, Philipp C Bammer, Markus Muckenhuber, Daniela Mayer, Tomasz M Kulinski, Hans-Christian Theussl, Josef M Penninger, Christoph Bock, Denise P Barlow, Florian M Pauler, Quanah J Hudson.

Förderung: Diese Arbeit wurde vom FWF Der Wissenschaftsfonds gefördert.

Denise Barlow, britische Epigenetikerin im Ruhestand, entdeckte als erste die genomische Prägung („genomic imprinting“) in Säugetieren. Nach ihrer ersten Ausbildung als Krankenpflegerin in Großbritannien schloss sie ein Studium in Zoologie an der Reading University ab, auf das ein Doktorat an der Warwick University folgte. Nach vier Jahren Forschungsarbeit in den ICRF Mill Hill Laboratories in London wechselte sie zu Hans Lehrach ans EMBL in Heidelberg. 1988 gründete sie ihre erste eigene Arbeitsgruppe am Wiener Institute for Molecular Pathology (IMP), ab 1996 leitete sie eine Forschungsgruppe am Netherlands Cancer Institute (NCI) in Amsterdam, anschließend am Institut für Molekularbiologie der ÖAW in Salzburg. Seit 2003 war sie Forschungsgruppenleiterin am CeMM Forschungszentrum für Molekulare Medizin der ÖAW, wo sie bis zu ihrem Ruhestand 2015 wirkte. Eine ihrer bahnbrechendsten Entdeckungen war die Entdeckung des ersten geprägten Gens in Säugetieren, das für den „Insulin-like Growth Factor Typ-2“ (IGF2R)-Rezeptor kodiert. Das von ihr entdeckte Prinzip des „epigenetic silencing“ mit langen, nichtkodierenden RNA-Molekülen stellte sich später als wichtiger Mechanismus der Genregulation heraus. Denise Barlow erhielt für ihre Forschung zahlreiche Preise und Ehrungen, darunter der Erwin Schrödinger Preis, die EMBL Medaille für ihr Lebenswerk und eine Ehrenprofessur für Genetik der Universität Wien.

Das CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften ist eine internationale, unabhängige und interdisziplinäre Forschungseinrichtung für molekulare Medizin unter der wissenschaftlichen Leitung von Giulio Superti-Furga. Das CeMM orientiert sich an den medizinischen Erfordernissen und integriert Grundlagenforschung sowie klinische Expertise, um innovative diagnostische und therapeutische Ansätze für eine Präzisionsmedizin zu entwickeln. Die Forschungsschwerpunkte sind Krebs, Entzündungen, Stoffwechsel- und Immunstörungen sowie seltene Erkrankungen. Das Forschungsgebäude des Instituts befindet sich am Campus der Medizinischen Universität und des Allgemeinen Krankenhauses Wien. www.cemm.at

Für Rückfragen wenden Sie sich bitte an:

Mag. Wolfgang Däuble
Media Relations Manager

CeMM
Research Center for Molecular Medicine
of the Austrian Academy of Sciences
Lazarettgasse 14, AKH BT 25.3
1090 Vienna, Austria
Phone +43-1/40160-70 057
Fax +43-1/40160-970 000
wdaeuble@cemm.oeaw.ac.at

www.cemm.at

Mag. Wolfgang Däuble | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Allelom CeMM Genvarianten Molekulare Medizin X-Chromosom X-Inaktivierung ÖAW

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien schwärmen aus
17.01.2019 | Philipps-Universität Marburg

nachricht Forscher der TU Dresden finden neuen Ansatz für Therapien für neurodegenerative Erkrankungen
17.01.2019 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leistungsschub für alle Omicron Laser

17.01.2019 | Messenachrichten

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungsnachrichten

Mit Blutgefäßen aus Stammzellen gegen Volkskrankheit Diabetes

17.01.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics