Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Multitasking in Perfektion: Nervenzelle arbeitet wie 1400 einzelne Zellen

26.04.2019

CT1 ist anders. In der Regel bekommt eine Nervenzelle Input von verschiedenen Zellen, verarbeitet die Signale, und gibt ihren Output an nachgeschaltete Zellen weiter. In der CT1 Zelle arbeitet jedoch jeder der rund 1400 Zellbereiche wie eine separate Nervenzelle. Dadurch kann CT1 auf Informationen aus allen Facetten des Komplexauges der Fliege zugreifen und lokal zu den Berechnungen der Bewegungsrichtung beitragen. Im Computermodell zeigen Alexander Borst und Matthias Meier vom Max-Planck-Institut für Neurobiologie, dass CT1 damit an biophysikalische Grenzen stößt.

„So eine verrückte Nervenzelle!“ Das war der erste Eindruck von Alexander Borst, als Matthias Meier ihm die Ergebnisse vorlegte. Zusammen haben die beiden Neurobiologen gezeigt, was auch für Amakrinzellen in der Netzhaut von Säugetieren vermutet wird: Es ist möglich, dass in einer einzigen Nervenzelle viele, elektrisch voneinander isolierte Mikroschaltkreise existieren.


Die Nervenzelle CT1 im Gehirn der Fruchtfliege funktioniert mit ihren Untereinheiten wie rund 1400 einzelne Zellen.

(c) MPI für Neurobiologie, M. Meier

Borst und Meier untersuchen das Sehsystem von Fruchtfliegen. Deren Komplexaugen bestehen aus jeweils rund 700 Facetten. CT1 kontaktiert mit ihren Fortsätzen jede der Zellsäulen, die sich im Gehirn an diese Facetten anschließen. Aber das ist noch nicht alles:

Diese Zelle kontaktiert zwei verschiedene Regionen des Fliegengehirnes, die jeweils für die Verarbeitung von hellen beziehungsweise dunklen Kanten zuständig sind. Somit verbindet CT1 insgesamt etwa 1400 Bereiche. Dadurch sollte eigentlich das ganze System zusammenbrechen.

Denn die säulenförmig angeordneten Zellen verarbeiten die Lichtveränderung, die jeweils eine der Facetten wahrnimmt. Würden sich die Signale der Säulen mischen, wäre die gesamte Bildinformation für nachgeschaltete Zellen verloren.

Die beiden Neurobiologen konnten aber zeigen, dass jeder Kontaktbereich von CT1 eine elektrisch isolierte, unabhängige funktionelle Einheit ist.

Jede dieser Einheiten erhält Input von Zellen aus "ihrer" Säule und gibt ihr Output auch wieder in die gleiche Säule ab. Calcium-Messungen und Computermodelle zeigen, dass über die Verbindung zum Zellkörper keine nennenswerten Informationen weitergeleitet werden.

Damit die Zelleinheiten elektrisch voneinander isoliert sind, müssen ihre Verbindungen möglichst dünn und lang sein – das erhöht den elektrischen Widerstand. CT1 erreicht dies durch Verbindungen mit gerade einmal 100 Nanometer Durchmesser. Außerdem sind die "Verbindungskabel" in Schlaufen gelegt.

So wird der Weg zwischen benachbarten Einheiten rund zehnmal länger als es zum Überbrücken der Distanz nötig wäre. „Noch dünner oder länger geht es im Fliegenhirn kaum“, so Borst.

Warum CT1 so völlig anders ist als die meisten anderen Zellen, ist noch ein Rätsel. „Es spart Zellkörper, aber das ist sicher nicht der einzige Grund, denn dann sollte es so einen Zellaufbau öfters geben“, überlegt Matthias Meier.

Bisher sind nur sehr wenige Zellen mit solch einer Struktur bekannt. Von dem Extrembeispiel CT1 existieren nur zwei Zellen im Fliegenhirn, je eine pro Gehirnhälfte.

Auch über die Funktion von CT1 sind sich die Forscher noch nicht ganz im Klaren. Der Output der CT1-Untereinheiten geht – je nach ihrer Lage – an T4- oder T5-Zellen. Diese berechnen die Richtung von Bildbewegungen vor dem Fliegenauge.

Interessanterweise kontaktieren CT1 Zellen die bewegungssensitiven T4- und T5-Zellen ganz spezifisch nur auf einer Hälfte deren Dendriten. Wie CT1 dadurch das Bewegungssehen beeinflusst, wollen die Martinsrieder Neurobiologen als nächstes untersuchen.

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-mail: merker@neuro.mpg.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Alexander Borst
Max-Planck-Institut für Neurobiologie, Martinsried
Abteilung Schaltkreise – Information – Modelle
Tel.: 089 8578 - 3251
Email: borst@neuro.mpg.de

Originalpublikation:

Matthias Meier & Alexander Borst
Extreme compartmentalization in a Drosophila amacrine cell
Current Biology, online am 25. April 2019

Weitere Informationen:

http://www.neuro.mpg.de/borst - Webseite der Abteilung von Alexander Borst

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nierenkrebs an der Wurzel packen
17.02.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Schaffen Affengehirne das auch mit links?
17.02.2020 | Max-Planck-Institut für evolutionäre Anthropologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Flexibles Fügen und wandlungsfähige Prozessketten: der Schlüssel für effiziente Produktion

17.02.2020 | Interdisziplinäre Forschung

AgiloBat: Batteriezellen flexibel produzieren

17.02.2020 | Energie und Elektrotechnik

Nierenkrebs an der Wurzel packen

17.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics