Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Multitasking in Perfektion: Nervenzelle arbeitet wie 1400 einzelne Zellen

26.04.2019

CT1 ist anders. In der Regel bekommt eine Nervenzelle Input von verschiedenen Zellen, verarbeitet die Signale, und gibt ihren Output an nachgeschaltete Zellen weiter. In der CT1 Zelle arbeitet jedoch jeder der rund 1400 Zellbereiche wie eine separate Nervenzelle. Dadurch kann CT1 auf Informationen aus allen Facetten des Komplexauges der Fliege zugreifen und lokal zu den Berechnungen der Bewegungsrichtung beitragen. Im Computermodell zeigen Alexander Borst und Matthias Meier vom Max-Planck-Institut für Neurobiologie, dass CT1 damit an biophysikalische Grenzen stößt.

„So eine verrückte Nervenzelle!“ Das war der erste Eindruck von Alexander Borst, als Matthias Meier ihm die Ergebnisse vorlegte. Zusammen haben die beiden Neurobiologen gezeigt, was auch für Amakrinzellen in der Netzhaut von Säugetieren vermutet wird: Es ist möglich, dass in einer einzigen Nervenzelle viele, elektrisch voneinander isolierte Mikroschaltkreise existieren.


Die Nervenzelle CT1 im Gehirn der Fruchtfliege funktioniert mit ihren Untereinheiten wie rund 1400 einzelne Zellen.

(c) MPI für Neurobiologie, M. Meier

Borst und Meier untersuchen das Sehsystem von Fruchtfliegen. Deren Komplexaugen bestehen aus jeweils rund 700 Facetten. CT1 kontaktiert mit ihren Fortsätzen jede der Zellsäulen, die sich im Gehirn an diese Facetten anschließen. Aber das ist noch nicht alles:

Diese Zelle kontaktiert zwei verschiedene Regionen des Fliegengehirnes, die jeweils für die Verarbeitung von hellen beziehungsweise dunklen Kanten zuständig sind. Somit verbindet CT1 insgesamt etwa 1400 Bereiche. Dadurch sollte eigentlich das ganze System zusammenbrechen.

Denn die säulenförmig angeordneten Zellen verarbeiten die Lichtveränderung, die jeweils eine der Facetten wahrnimmt. Würden sich die Signale der Säulen mischen, wäre die gesamte Bildinformation für nachgeschaltete Zellen verloren.

Die beiden Neurobiologen konnten aber zeigen, dass jeder Kontaktbereich von CT1 eine elektrisch isolierte, unabhängige funktionelle Einheit ist.

Jede dieser Einheiten erhält Input von Zellen aus "ihrer" Säule und gibt ihr Output auch wieder in die gleiche Säule ab. Calcium-Messungen und Computermodelle zeigen, dass über die Verbindung zum Zellkörper keine nennenswerten Informationen weitergeleitet werden.

Damit die Zelleinheiten elektrisch voneinander isoliert sind, müssen ihre Verbindungen möglichst dünn und lang sein – das erhöht den elektrischen Widerstand. CT1 erreicht dies durch Verbindungen mit gerade einmal 100 Nanometer Durchmesser. Außerdem sind die "Verbindungskabel" in Schlaufen gelegt.

So wird der Weg zwischen benachbarten Einheiten rund zehnmal länger als es zum Überbrücken der Distanz nötig wäre. „Noch dünner oder länger geht es im Fliegenhirn kaum“, so Borst.

Warum CT1 so völlig anders ist als die meisten anderen Zellen, ist noch ein Rätsel. „Es spart Zellkörper, aber das ist sicher nicht der einzige Grund, denn dann sollte es so einen Zellaufbau öfters geben“, überlegt Matthias Meier.

Bisher sind nur sehr wenige Zellen mit solch einer Struktur bekannt. Von dem Extrembeispiel CT1 existieren nur zwei Zellen im Fliegenhirn, je eine pro Gehirnhälfte.

Auch über die Funktion von CT1 sind sich die Forscher noch nicht ganz im Klaren. Der Output der CT1-Untereinheiten geht – je nach ihrer Lage – an T4- oder T5-Zellen. Diese berechnen die Richtung von Bildbewegungen vor dem Fliegenauge.

Interessanterweise kontaktieren CT1 Zellen die bewegungssensitiven T4- und T5-Zellen ganz spezifisch nur auf einer Hälfte deren Dendriten. Wie CT1 dadurch das Bewegungssehen beeinflusst, wollen die Martinsrieder Neurobiologen als nächstes untersuchen.

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-mail: merker@neuro.mpg.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Alexander Borst
Max-Planck-Institut für Neurobiologie, Martinsried
Abteilung Schaltkreise – Information – Modelle
Tel.: 089 8578 - 3251
Email: borst@neuro.mpg.de

Originalpublikation:

Matthias Meier & Alexander Borst
Extreme compartmentalization in a Drosophila amacrine cell
Current Biology, online am 25. April 2019

Weitere Informationen:

http://www.neuro.mpg.de/borst - Webseite der Abteilung von Alexander Borst

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem
24.05.2019 | Universität Leipzig

nachricht Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken
24.05.2019 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics