Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Multiple Sklerose: Neu entdeckter Signalmechanismus macht T-Zellen pathogen

01.12.2016

Folgenschwere Instruktionen

T-Zellen sind ein wichtiger Teil des Immunsystems. Sie können aber nicht nur Krankheitserreger ausschalten, sondern auch selbst zu einer Gefahr werden. Forscherinnen und Forscher der Technischen Universität München (TUM) und der Universitätsmedizin Mainz haben herausgefunden, wann bestimmte T-Zellen zu krankheitserregenden T-Zellen werden, die mit Multipler Sklerose in Verbindung gebracht werden. Die Ergebnisse erklären, warum bestimmte Behandlungsansätze nicht zuverlässig wirken. Sie sind in der aktuellen Ausgabe von „nature immunology“ veröffentlicht.


Die dendritische Zelle und die T-Zelle bei der Clusterbildung (rechts im Bild)

Prof. Dr. Thomas Korn (Technische Universität München)

Multiple Sklerose ist eine Autoimmunerkrankung, also eine Krankheit, bei der das Abwehrsystem des Körpers die eigenen Zellen angreift. In diesem Fall sorgen veränderte T-Zellen dafür, dass die Myelinhülle von Nervenzellen abgebaut wird. Diese Schicht schützt die eigentliche Nervenbahn und sorgt erst dafür, dass Informationen übertragen werden können.

Welche Ziele im Körper T-Zellen ansteuern und welche Wirkung sie dort entfalten, hängt von verschiedenen Faktoren ab. Professor Thomas Korn, Inhaber des Lehrstuhls für Experimentelle Neuroimmunologie der TUM, konnte bereits in einer früheren Studie zeigen, dass im Fall der T-Zellen, die zur Schädigung von Myelinhüllen im zentralen Nervensystem führen, ein Stoff namens Interleukin-6 eine wichtige Rolle spielt.

Die „Anleitung“ dafür, gewebeschädigende Wirkung zu entfalten, erhalten die T-Zellen in Lymphknoten. Sie treffen dort mit einer bestimmten Variante sogenannter dendritischer Zellen zusammen. Diese zeigen den T-Zellen an, beim Kontakt mit welchen Substanzen sie in anderen Teilen des Körpers eine Immunreaktion auslösen sollen.

Im Fall von Fremdantigenen, zum Beispiel Bestandteilen von Viren oder Bakterien ist das sinnvoll. Sie können dadurch aus dem Gewebe eliminiert werden. Handelt es sich aber um Autoantigene, also um Bestandteile köpereigener Substanzen wie der Myelinhülle, leiten die T-Zellen eine Immunreaktion gegen den Körper selbst ein.

Wenn dendritische Zellen nicht nur das Myelin als „Zielsubstanz“ anzeigen, sondern zugleich den Botenstoff Interleukin-6, kurz IL-6, ausschütten, wird in den T-Zellen eine Art molekularer Schalter umgelegt. Sie werden dann pathogen, entfalten also besonders gewebsschädigende Eigenschaften.

„Mit diesem scheinbar klaren Zusammenhang gab es aber ein großes Problem“, erzählt Thomas Korn. „Die T-Zellen wurden nicht immer pathogen, wenn IL-6 ausgeschüttet wurde.“ Gemeinsam mit Forscherinnen und Forschern um Professor Ari Waisman, Leiter des Instituts für Molekulare Medizin an der Universitätsmedizin Mainz, haben Korn und sein Team jetzt eine Erklärung für dieses Phänomen. „Entscheidend ist nicht nur, ob die dendritischen Zellen den T-Zellen mit IL-6 Signale senden“, sagt Ari Waisman, „Es geht darum, auf welchem Weg sie das tun.“

Ein dritter Weg

Bislang waren zwei Wege bekannt, auf denen die dendritischen Zellen IL-6 an die T-Zellen weitergeben. Sie können den Botenstoff zum einen in ihr Umfeld abgeben, die Moleküle sind löslich und bilden eine Wolke im engen Umfeld der dendritischen Zelle. Zum anderen können lösliches IL-6 und löslicher IL-6 Rezeptor einen Komplex bilden, der in bestimmten Zielzellen ein Signal auslösen kann („Trans-Signaling“).Korn und Waisman fanden heraus, dass IL-6 weder auf die eine noch auf die andere Weise die entscheidende Veränderung in den T-Zellen auslöst. Stattdessen identifizierten sie einen dritten Weg. Die dendritischen Zellen können IL-6 auch direkt über ihre Oberfläche weitergeben. Diesen Modus der Signalübermittlung bezeichnen Korn und Waisman als „Cluster Signaling“.

Namensgebend ist der Haufen (engl. Cluster), den die dendritische und die T-Zelle dabei bilden. Das Besondere an diesem „dritten“ IL-6-Signalmodus ist, dass es eine enge zeitliche Kopplung des IL-6 Signals mit anderen Signalen gibt, die die T-Zelle von der dendritischen Zelle empfängt. Wahrscheinlich führt diese zeitliche Kopplung dazu, dass die T-Zelle besonders aggressiv wird und ihr Zielantigen hocheffizient angreift. Derzeit untersucht das Team um Thomas Korn das genaue Zusammenspiel der verschiedenen Signale.

Bereits heute machen sich Teams, die Behandlungsmethoden für verschiedene chronisch entzündliche und Autoimmun-Krankheiten erforschen, den Zusammenhang zwischen IL-6 und pathogenen T-Zellen zunutze. Wenn die Signalgebung durch IL-6 blockiert ist, so die Idee, bilden sich auch keine pathogenen Zellen. Das gilt nicht nur für Multiple Sklerose, sondern beispielsweise auch für rheumatoide Arthritis, die ebenfalls durch Fehler des Immunsystems hervorgerufen wird. „Unsere Forschungsergebnisse können erklären, warum einige dieser Therapieansätze erfolgreich sind und andere nicht“, sagt Thomas Korn. „Die verschiedenen Medikamente blockieren oft nur eine bestimmte Methode der Signalübermittlung. Wenn die Übermittlung durch gelöstes IL-6 verhindert wird, kann Cluster-Signaling noch möglich sein“, ergänzt Ari Waisman.

Original-Publikation:
Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells; Sylvia Heink, Nir Yogev, Christoph Garbers, Marina Herwerth, Lilian Aly, Christiane Gasperi, Veronika Husterer, Andrew L. Croxford, Katja Möller-Hackbarth, Harald S. Bartsch, Karl Sotlar, Stefan Krebs, Tommy Regen, Helmut Blum, Bernhard Hemmer, Thomas Misgeld, Thomas F. Wunderlich, Juan Hidalgo, Mohamed Oukka, Stefan Rose-John, Marc Schmidt-Supprian, Ari Waisman und Thomas Korn;
nature immunology; published online 28 November 2016; doi:10.1038/ni.3632

Kontakt Technische Universität München:
Univ.-Prof. Dr. med. Thomas Korn, Klinikum rechts der Isar, Dept. Head Experimental Neuroimmunology Ismaninger Str. 22, 81675 München, Tel. 089-4140-4606 (Secretary),
E-mail: thomas.korn@tum.de

Kontakt Universitätsmedizin Mainz:
Univ.-Prof. Dr. Ari Waisman, Leiter des Instituts für Molekulare Medizin der Universitätsmedizin Mainz, Telefon 06131 17-9129, Fax 06131 17-9039, E-Mail: waisman@uni-mainz.de

Pressekontakt Technische Universität München:
Paul Hellmich, Pressereferent - Media Relations, Medizin, zentrale Hochschulthemen,
Technische Universität München, Corporate Communications Center,
Arcisstraße 21, 80333 München, Tel: +49 89 289-22731, Fax: +49 (89) 289-23388;
E-Mail paul.hellmich@tum.de

Pressekontakt Universitätsmedizin Mainz:
Barbara Reinke, Stabsstelle Kommunikation und Presse Universitätsmedizin Mainz,
Telefon 06131 17-7428, Fax 06131 17-3496, E-Mail: pr@unimedizin-mainz.de

Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige medizinische Einrichtung der Supramaximalversorgung in Rheinland-Pfalz und ein international anerkannter Wissenschaftsstandort. Sie umfasst mehr als 60 Kliniken, Institute und Abteilungen, die fächerübergreifend zusammenarbeiten. Hochspezialisierte Patientenversorgung, Forschung und Lehre bilden in der Universitätsmedizin Mainz eine untrennbare Einheit. Rund 3.300 Studierende der Medizin und Zahnmedizin werden in Mainz ausgebildet. Mit rund 7.500 Mitarbeiterinnen und Mitarbeitern ist die Universitätsmedizin zudem einer der größten Arbeitgeber der Region und ein wichtiger Wachstums- und Innovationsmotor.

Weitere Informationen im Internet unter www.unimedizin-mainz.de

Barbara Reinke M.A. | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können
13.08.2018 | Australisch-Neuseeländischer Hochschulverbund / Institut Ranke-Heinemann

nachricht Die künstliche Plazenta im Labor
13.08.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Arctic Ocean 2018 - Forscher untersuchen Wolken und Meereis in der Arktis

"Arctic Ocean 2018": So heißt die diesjährige Forschungsexpedition des schwedischen Eisbrechers ODEN in der Arktis, an der auch ein Wissenschaftler der Universität Leipzig beteiligt ist. Noch bis zum 25. September wollen die etwa 40 Forscher an Bord vor allem das mikrobiologische Leben im Ozean und im Meereis untersuchen und wie es mit der Wolkenbildung in der Arktis zusammenhängt.

Während der Fahrt durch die Arktis, die Ende Juli gestartet ist, sollen im Rahmen der Kampagne MOCCHA 2018 (Microbiology-Ocean-Cloud-Coupling in the Hight...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

Herausforderung China – Wissenschaftler aus der ganzen Welt diskutieren miteinander auf UW/H-Tagung

03.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltkleinster Transistor schaltet Strom mit einzelnem Atom in festem Elektrolyten

13.08.2018 | Energie und Elektrotechnik

Your Smartphone is Watching You: Gefährliche Sicherheitslücken in Tracker-Apps

13.08.2018 | Informationstechnologie

Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können

13.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics