Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Moos für sauberes Wasser - Abwasserreinigung mit dem PhyscoFilter

25.09.2013
Sauberes Wasser ist ein Menschenrecht – jedoch sind weltweit noch rund 780 Millionen Menschen von dieser Ressource abgeschnitten.

In den Schwellenländern schreitet die Industrialisierung schnell voran: Ungeklärte Abwässer verunreinigen dort das Trinkwasser. Doch auch Kläranlagen filtern längst nicht alle Rückstände heraus.

Das gilt für Pestizide, Medikamente und Hormone. Mit diesen „ungeklärten Fällen“ beschäftigen sich jetzt junge Forscherinnen und Forscher an der Technischen Universität München (TUM). Sie wollen eine verbreitete Moospflanze genetisch verändern – und sie zur kostengünstigen Minikläranlage für Arzneimittelbestandteile und Chemikalien machen.

Das Moos-Projekt ist der diesjährige Beitrag von TUM-Studierenden am internationalen iGEM-Wettbewerb (http://igem.org/About) für Synthetische Biologie, der 2013 zum neunten Mal am Massachusetts Institute of Technology (MIT) ausgetragen wird. Ziel des Wettbewerbs: Organismen sollen gentechnisch modifiziert werden – und mit neuen Eigenschaften einen Mehrwert für die Gesellschaft schaffen.

Abbauen und filtern: Wie wird das Wasser Chemikalien-frei?

Für ihre Experimente verwenden die Studierenden das Kleine Blasenmützenmoos (Physcomitrella patens). Um damit Schadstoffe aus dem Wasser zu entfernen, erprobt das iGEM-Team zwei Ansätze: „Zum einen wollen wir das Moos dazu bringen, gefährliche Substanzen zu harmlosen Stoffen abzubauen (Biodegradation); zum anderen soll es biologisch nicht-abbaubare Substanzen binden und so als Filter arbeiten (Bioakkumulation)“, erklärt Katrin Fischer. Sie studiert im 5. Semester Biochemie.

Für diese beiden Verfahren schleusen die Forscherinnen und Forscher selbst entworfene DNA-Bausteine in das Erbmaterial des Mooses ein. Diese kodieren für Proteine, die Chemikalien aufspalten oder die Schadstoffe binden. Damit ist das Moos unter anderem in der Lage, die weitverbreitete Gruppe der Makrolid-Antibiotika und Hormone aus der Antibabypille abzubauen. Außerdem bindet das Moos das Insektizid DDT. Diese Stoffgruppen können in herkömmlichen Kläranlagen nur unzureichend abgebaut werden.

Sicheres Moos durch genetischen Schalter

„Das Moos Physcomitrella patens ist auch in der Natur ein wichtiger Wasserfilter – und damit der ideale Organismus für unser Projekt“, sagt Fischer. Obwohl die Studenten in ihrem Projekt lediglich zeigen wollen, dass ein Moosfilter funktionieren kann, haben sie den möglichen Einsatz in der Praxis im Blick.

Damit das modifizierte Moos keinesfalls unkontrolliert ins Freiland gelangt, haben die Studierenden eine ebenso simple wie effektive Lösung gefunden: Sie verwenden Moos, das aufgrund einer Mutation keine reifen Sporen bilden kann und bauen zusätzlich einen Selbstzerstörungs-Mechanismus in die Pflanze ein.

„Dieser biologische Schalter reagiert sensibel auf Licht im roten Wellenlängenbereich“, erklärt Jeffery Truong, Masterstudent der Molekularen Biotechnologie und Entwickler des Filters.

„Man könnte dann einen Filter für das Sonnenlicht verwenden, der den Rotlichtanteil gezielt entfernt. Wenn die Pflanze versehentlich freigesetzt wird, ist sie dem Sonnenlicht ausgesetzt, das Licht aller Wellenlängen enthält – das heißt, sie kann nicht überleben.“

Außerdem testet das Team, ob sich der „PhyscoFilter“ in der industriellen Abwasseraufbereitung einsetzen lässt. Dafür haben die Studierenden bereits einen Prototyp entwickelt. Und mit einer Machbarkeitsstudie überprüfen sie, wie aus der vielversprechenden Idee eine unternehmerische Anwendung werden kann.

Der Weg ins Finale

Mit ihrem PhyscoFilter hoffen die TUM-Studierenden auf die Teilnahme im Finale, das vom 1. bis 3. November 2013 in Boston ausgetragen wird. Davor müssen sie jedoch noch eine Hürde nehmen – den europäischen Vorentscheid in Lyon vom 11. bis 13. Oktober 2013. Insgesamt nehmen in diesem Jahr 223 Teams aus der ganzen Welt teil.

Das TUM-iGEM-Team 2013 hat elf Mitglieder, die meisten kommen aus den Studiengängen Biochemie und Molekulare Biotechnologie. Verstärkt wird das Team mit Studierenden der Mathematik und Maschinenbauwesen. Die Jungforscherinnen und -forscher rechnen sich gute Chancen aus – ihr Thema ist nicht nur technisch anspruchsvoll, wie Truong klarstellt:

„Wasser ist unsere wichtigste Lebensgrundlage. Doch die zunehmende Verbreitung von Chemikalien bedroht viele Ökosysteme und die Artenvielfalt. Mit unserem Projekt wollen wir einen Beitrag leisten, diese wertvolle Ressource zu schützen."

Pressemitteilung im Web:
http://www.wzw.tum.de/index.php?id=185&no_cache=1&tx_ttnews[tt_news]=573
Bildmaterial:
http://mediatum.ub.tum.de/node;albpnq-0jyda5-dp8ny1?cfold=1174219&dir=1174219
Webseite des iGEM-Teams:
http://2013.igem.org/Team:TU-Munich
Kontakt:
Prof. Dr. Arne Skerra
Technische Universität München
Lehrstuhl für biologische Chemie
T: +49.8161.71-4351
E: skerra@tum.de
W: http://www.wzw.tum.de/bc
Die Technische Universität München (TUM) ist mit rund 500 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 32.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 und 2012 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. In nationalen und internationalen Vergleichsstudien rangiert die TUM jeweils unter den besten Universitäten Deutschlands. Die TUM ist dem Leitbild einer forschungsstarken, unternehmerischen Universität verpflichtet. Weltweit ist die TUM mit einem Campus in Singapur sowie Niederlassungen in Peking (China), Brüssel (Belgien), Kairo (Ägypten), Mumbai (Indien) und São Paulo (Brasilien) vertreten.

Prof. Dr. Arne Skerra | Technische Universität München
Weitere Informationen:
http://www.tum.de
http://igem.org/About

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Titin in Echtzeit verfolgen
13.12.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Neu entdeckter Schalter steuert Zellteilung bei Bakterien
13.12.2019 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das feine Gesicht der Antarktis

Eine neue Karte zeigt die unter dem Eis verborgenen Geländeformen so genau wie nie zuvor. Das erlaubt bessere Prognosen über die Zukunft der Gletscher und den Anstieg des Meeresspiegels

Wenn der Klimawandel die Gletscher der Antarktis immer rascher Richtung Meer fließen lässt, ist das keine gute Nachricht. Denn dadurch verlieren die gefrorenen...

Im Focus: Virenvermehrung in 3D

Vaccinia-Viren dienen als Impfstoff gegen menschliche Pockenerkrankungen und als Basis neuer Krebstherapien. Zwei Studien liefern jetzt faszinierende Einblicke in deren ungewöhnliche Vermehrungsstrategie auf atomarer Ebene.

Damit Viren sich vermehren können, benötigen sie in der Regel die Unterstützung der von ihnen befallenen Zellen. Nur in deren Zellkern finden sie die...

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Titin in Echtzeit verfolgen

13.12.2019 | Biowissenschaften Chemie

LogiMAT 2020: Automatisierungslösungen für die Logistik

13.12.2019 | Messenachrichten

Das feine Gesicht der Antarktis

13.12.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics