Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulares Daumenkino: Momentaufnahmen aus dem Inneren der Zelle

18.03.2016

Forscher beobachten, wie sich die Struktur der RNA-Polymerase bei der Arbeit verändert

Einem Forschungsteam um den Braunschweiger Physikochemiker Prof. Philip Tinnefeld und der Biochemikerin Prof. Dina Grohmann ist es gelungen, Veränderungen in der RNA-Polymerase während ihrer Arbeit sichtbar zu machen.


Dreidimensionale Architektur einer RNA Polymerase. Die flexible Einheit der RNA-Polymerase, die verschiedene Konformationen annehmen kann, ist in blau hervorgehoben. Die Position der Fluoreszenzfarbstoffe, über die der mit einem orangen Pfeil angezeigte Abstand in der RNA-Polymerase und damit die Bewegung der flexiblen Einheit gemessen werden kann, ist mit einem grünen und roten Punkt gezeigt. (PCI/TU Braunschweig)


Während ihres Aktivitätszyklus in der Zelle interagiert die RNA Polymerase sowohl mit DNA als auch mit verschiedenen Faktoren. Die damit einhergehenden unterschiedlichen Konformationszustände der RNA-Polymerase konnten über die FRET-Technik mit nanometergenauer Auflösung analysiert werden, sodass ein „molekulares Daumenkino der RNA-Polymerase“ erstellt werden konnte. (PCI/TU Braunschweig)

Im Milliardstel Meter Bereich haben sie dafür Farbstoffe auf zwölf Proteinen platziert, deren Helligkeit sich je nach ihrer Entfernung zueinander verändert. Vergleichbar mit einem Daumenkino, konnte das Forschungsteam mit seinen Aufnahmen außerdem nachweisen, dass die Arbeit der RNA-Polymerase durch verschiedene Faktoren gesteuert und beeinflusst wird.

Ob Bakterium, Pflanze oder Tier – Nur wenige Enzyme sind baugleich in allen lebenden Organismen wiederzufinden. Unter diesen Molekülen befindet sich eine der zentralen Arbeitseinheiten einer Zelle, die RNA-Polymerase.

Ihre Aufgabe ist es, die in der DNA kodierte genetische Information zu lesen und umzuschreiben, die so genannte Transkription. Reguliert und gesteuert wird diese Arbeit durch unterschiedliche Faktoren, deren Einfluss und Wirkung auf die molekulare Übersetzungsmaschine bislang ungeklärt sind. „Es immer noch ein Rätsel, wie dieser hochkonservierte biologische Prozess mit ungeheurer Verlässlichkeit und Kontrolle durch die Transkriptionsfaktoren in den Zellen ablaufen kann“, sagt Prof. Tinnefeld.

Die atomare Aufschlüsselung der RNA-Polymerase-Struktur über Röntgenstrukturanalysen liefert der Wissenschaft sozusagen nur ein Standbild der dynamischen molekularen Maschine. Die so genannten Konformationsänderungen, die einen entscheidenden Schlüssel für die Funktionsweise der hochkomplexen Transkriptionsmaschinerie darstellen, konnten damit jedoch nicht erfasst werden.

Prof. Philip Tinnefeld und seiner Arbeitsgruppe „NanoBioScience“ ist es nun gelungen, die Vermutung von der Veränderung der RNA-Polymerase während ihrer Arbeit zu bestätigen und darüber hinaus auch die Faktoren und deren Wirkungsweise aufzuklären, die sie dabei beeinflussen. Veröffentlicht haben die Wissenschaftlerinnen und Wissenschaftler ihre Ergebnisse im Fachjournal „Proceedings of the National Academy of Sciences“ (PNAS). „Das Verständnis von der Arbeitsweise der RNA-Polymerase, ihrer beeinflussenden Faktoren und deren Wirkungsweise legt die Grundlage für die Aufklärung erblich bedingter Krankheiten sowie die Entwicklung von personalisierter Medizin“, erklärt Prof. Dina Grohmann.

Helligkeit von Farbstoffen zeigte Abstand der Moleküle zueinander

Um einen Einblick in die Funktion der RNA-Polymerase und der sie steuernden Transkriptionsfaktoren unter nahezu unbeeinflussten Bedingungen zu erhalten, hat das Forschungsteam eine Einzelmolekültechnik eingesetzt. Verfolgt haben sie damit bestimmte, relevante Abstände mit nanometergenauer Auflösung durch den gesamten Transkriptionsprozess auf der Polymerase. Dazu wurden der Komplex aus RNA-Polymerase und DNA auf einem Deckglas zusammengesetzt und mit verschiedenen Fluoreszenzfarbstoffen spezifischen Stellen markiert.

In einem als FRET (Förster Resonanz-Energietransfer) bezeichneten Prozess übertragen die beiden Farbstoffe abhängig von ihrem Abstand zueinander Energie. Befinden sie sich in räumlicher Nähe, leuchtet der rote Farbstoff, sind sie weiter auseinander positioniert, leuchtet der grüne Farbstoff stärker. Aus dem Verhältnis der Farbintensitäten lassen sich dann exakte Abstände und Abstandsänderungen auf der RNA-Polymerase quantitativ messen. Auf diese Weise hat das Team tausende einzelner Transkriptionskomplexe untersucht, so dass die Veränderung der RNA-Polymerase in jeder Phase ihrer Aktivität bestimmt werden konnte.

„Im Gegensatz zum Standbild, haben wir mit unserer Arbeit quasi einen molekularen ‚Stop-Motion‘ Film der aktiven RNA-Polymerase erstellt, der im Detail und mit hoher Präzision die hohe Flexibilität der Transkriptionsmaschinerie zeigt“, fasst Prof. Tinnefeld das Forschungsergebnis zusammen.

Zur Arbeitsgruppe „NanoBioScience“

Die Forschungsergebnisse wurden in der Arbeitsgruppe „NanoBioScience“ unter Leitung von Prof. Philip Tinnefeld am Institut für Physikalische und Theoretische Chemie der TU Braunschweig und in Zusammenarbeit mit der Arbeitsgruppe von Prof. Dr. Finn Werner vom Institute of Structural and Molecular Biology des University College London erzielt. Prof. Dr. Dina Grohmann war von 2011 bis 2015 Mitglied der Arbeitsgruppe „NanoBioScience“ und ist gegenwärtig Professorin für Mikrobiologie an der Universität Regensburg. Gefördert wurde die Forschungsarbeit durch einen Starting Grant des European Research Council (ERC), die Volkswagenstiftung, die Deutsche Forschungsgemeinschaft sowie durch die German-Israel-Foundation. Die Arbeitsgruppe „NanoBioScience“ von Prof. Philip Tinnefeld ist Mitglied des Braunschweig Integrated Centre of Systems Biology (BRICS) und des Laboratory for Emerging Nanometrology (LENA) der TU Braunschweig.

Zur Publikation

“TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle”, Sarah Schulz, Andreas Gietl, Katherine Smollett, Philip Tinnefeld, Finn Werner and Dina Grohmann. Proceedings of the National Academy of Sciences U.S.A.
(DOI: 10.1073/pnas.1515817113, Erscheinungstermin 15.3.2016)

Weitere Informationen
http://www.pnas.org/content/early/2016/03/14/1515817113.short?rss=1
www.tu-braunschweig.de/pci/research/tinnefeld
http://www.uni-regensburg.de/biologie-vorklinische-medizin/mikrobiologie/team-le...

Kontakt

Prof. Dr. Philip Tinnefeld
Leiter der Arbeitsgruppe NanoBioScience
Institut für Physikalische und Theoretische Chemie
Technische Universität Braunschweig
Hans-Sommer-Strasse 10
38106 Braunschweig
Tel.: 0531/391-5330
E-Mail: p.tinnefeld@tu-braunschweig.de
www.tu-braunschweig.de/pci

Prof. Dr. Dina Grohmann
Lehrstuhl für Mikrobiologie
Institut für Biochemie, Genetik und Mikrobiologie
Universität Regensburg
Universitätsstraße 31
93053 Regensburg
Tel: 0941/943-3147
E-Mail: dina.grohmann@ur.de
www.uni-regensburg.de/biologie-vorklinische-medizin/mikrobiologie

Weitere Informationen:

http://blogs.tu-braunschweig.de/presseinformationen/?p=10130
http://www.pnas.org/content/early/2016/03/14/1515817113.short?rss=1
http://www.tu-braunschweig.de/pci/research/tinnefeld
http://www.uni-regensburg.de/biologie-vorklinische-medizin/mikrobiologie/team-le...

Stephan Nachtigall | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://blogs.tu-braunschweig.de/presseinformationen/?p=10130

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics