Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Schalter im Detail erforscht

07.12.2016

Sehen, Riechen, Schmecken, Blutdruckregulation – an allen diesen Prozessen sind molekulare Schalter beteiligt. Den Mechanismus, mit dem diese Proteine ausgeschaltet werden, hat ein Forscherteam der Ruhr-Universität Bochum (RUB) um Prof. Dr. Klaus Gerwert und Privatdozent Dr. Carsten Kötting untersucht. Sie nutzten dafür die Infrarotspektroskopie (FTIR) und Computersimulationen und konnten den Prozess auf subatomarer Ebene beschreiben. Die Wissenschaftler berichten in der Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS).

Für das Ausschalten vieler Proteinschalter ist das Energiespeichermolekül GTP entscheidend, das an die Proteine gebunden ist. Spaltet ein Enzym eine Phosphatgruppe von GTP ab, wird das Schalterprotein ausgeschaltet. Diese sogenannte GTP-Hydrolyse läuft innerhalb von Sekunden ab und wird vor allem von einer besonderen Aminosäure erledigt, dem Arginin-Finger.


Sie bringen Licht ins Zusammenspiel der Proteine: Klaus Gerwert, Carsten Kötting und Daniel Mann (von links).

Foto: RUB, Marquard

Funktioniert dieser Prozess nicht richtig, kommt es zum Beispiel zur Cholera-Erkrankung. Wie der Arginin-Finger genau arbeitet, konnten die Forscher dank einer Kombination aus Methoden der Biologie, der theoretischen Physik und der Experimentalphysik erstmals im Detail beschreiben.

Mikroskop mit subatomarer Auflösung

Eine am RUB-Lehrstuhl für Biophysik etablierte Methode erlaubt es, enzymatische Prozesse mit hoher zeitlicher und räumlicher Auflösung in ihrem natürlichen Zustand zu verfolgen. Es handelt sich dabei um eine besondere Form der Spektroskopie, die zeitaufgelöste Fourier-Transform-Infrarotspektroskopie, kurz FTIR. Allerdings geben die damit gemessenen Daten keine Auskunft darüber, an welcher Stelle des Enzyms ein Prozess gerade stattfindet.

Diese Information können die Forscher durch quantenmechanische Computersimulationen von Strukturmodellen gewinnen. „Durch Kombination von Theorie und Experiment erhält man so ein Mikroskop mit subatomarer Auflösung“, erklärt Klaus Gerwert.

Mit diesem Ansatz fanden die Forscher im Detail heraus, wie die GTP-Hydrolyse beschleunigt wird: Der Arginin-Finger wechselt beim schnellen Ausschalten wie bei einem Fingerschnipp die Position.

Defekter Schalter kann zu Krebs führen

Dieses Ergebnis ist bedeutend, weil der enzymatische Prozess der GTP-Hydrolyse als molekularer Schalter häufig vorkommt. Die Mechanismen der verschiedenen Schaltprozesse im Körper unterscheiden sich nur im Detail. Die GTP-Hydrolyse ist zum Beispiel auch ein Schalter für das Protein Ras, dessen Fehlfunktion zu unkontrolliertem Zellwachstum bei Tumoren führt. „Indem wir die Ergebnisse unserer Untersuchungen an verschiedenen Schaltprozessen verknüpfen, bringen wir immer weitere Details der GTP-Hydrolyse ans Licht“, so Carsten Kötting.

So visualisierten die Wissenschaftler spektroskopisch den Zustand des Arginin-Fingers gebunden an das GTP-Molekül mit einer Genauigkeit von einem Hundertstel Atomdurchmesser. Der Arginin-Fingerschnipp hat große Auswirkungen auf Geometrie und Ladungsverteilung des Bindungspartners. „Unser Fernziel ist es, durch diese Grundlagenforschung einmal zur Entwicklung von Medikamenten gegen Krebs und schwerwiegende Erbkrankheiten beizutragen“, so Daniel Mann vom Forscherteam.

Förderung

Die Deutsche Forschungsgemeinschaft förderte die Arbeiten im Rahmen des Sonderforschungsbereichs 642.

Originalveröffentlichung

Daniel Mann, Christian Teuber, Stefan Tennigkeit, Grit Schröter, Klaus Gerwert, Carsten Kötting: Mechanism of the intrinsic Arginine Finger in heterotrimeric G-Proteins, in: Proceedings of the National Academy of Sciences, 2016, DOI: 10.1073/pnas.1612394113
http://www.pnas.org/content/early/2016/11/23/1612394113

Pressekontakt

Privatdozent Dr. Carsten Kötting
Lehrstuhl für Biophysik
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 24873
E-Mail: carsten.koetting@rub.de

Prof. Dr. Klaus Gerwert
Lehrstuhl für Biophysik
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 24461
E-Mail: gerwert@bph.rub.de

Weitere Informationen:

http://www.pnas.org/content/early/2016/11/23/1612394113 - Originalveröffentlichung

Meike Drießen | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Biologie Biophysik Biotechnologie GTP Krebs Mikroskop Ruhr-Universität Schalter

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Form bleiben
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Intelligente Fluoreszenzfarbstoffe
16.08.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schatzkammer Datenbank: Digitalisierte Schwingfestigkeitskennwerte sparen Entwicklungszeit

16.08.2018 | Informationstechnologie

Interaktive Software erleichtert Design komplexer Gussformen

16.08.2018 | Informationstechnologie

Fraunhofer HHI entwickelt Quantenkommunikation für jedermann im EU-Projekt UNIQORN

16.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics