Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Leibwächter für unreife Membranproteine

08.09.2015

Viele Proteine sind während ihrer Entstehung in der Zelle auf die Hilfe molekularer Beschützer, sogenannter Chaperone, angewiesen. Diese wachen darüber, dass sich die Proteine in ihre richtige Struktur falten. Welche Rolle Chaperone bei der Faltung von Membranproteinen spielen können, war lange Zeit ungeklärt. Forschende vom Biozentrum der Universität Basel und der ETH Zürich konnten nun zeigen, wie Chaperone ein unreifes bakterielles Membranprotein stabilisieren, in die richtige Faltungsrichtung lenken und so vor Fehlfaltung schützen. Die Studie erschien kürzlich in «Nature Structural & Molecular Biology».

Ununterbrochen produzieren Maschinen in der Zelle lange Peptidketten, die Proteine. Damit ein Protein seine Aufgaben ordentlich erfüllen kann, muss es dann aber zunächst seine richtige räumliche Struktur einnehmen. In jeder Zelle gibt es dazu molekulare Helferproteine, genannt Chaperone. Sie passen auf die noch unreifen Proteine auf, helfen ihnen bei der Faltung und verhindern Fehler.


Chaperone (hellblau) helfen beim Einbau und der Faltung des bakteriellen Membranproteins FhuA (gelb).

Universität Basel, Biozentrum

Forscher um Sebastian Hiller, Professor am Biozentrum der Universität Basel und Daniel Müller, Professor am Department Biosysteme (D-BSSE) der ETH Zürich in Basel, haben herausgefunden, wie zwei Chaperone im Darmbakterium E. coli das Membranprotein FhuA beim Transport beschützen und ihm beim Einfädeln in die Membran assistieren.

Chaperone helfen beim Einfädeln von Membranprotein

In der äusseren Membran von Bakterien sind unzählige Proteine eingebettet, die Nährstoffe und Signalmoleküle transportieren. Eines dieser membranständigen Transporter ist das Protein FhuA. Mithilfe dieses Proteins nehmen die Bakterien das für sie lebenswichtige Eisen, aber auch Antibiotika auf. Doch wie gelangt nun das sehr grosse, fassförmige FhuA-Protein unbeschädigt in die äussere Membran? Dieser Frage sind die Wissenschaftler vom Biozentrum und dem D-BSSE auf den Grund gegangen.

Um sich einen Weg in die äussere Membran zu ebnen, bedient sich FhuA der Hilfe zweier Chaperone. Mittels Strukturanalysen und Einzelmolekül-Kraftspektroskopie konnten die Forscher nun erstmals aufklären, wie die beiden Chaperone das noch unreife Protein stabilisieren und eine Fehlfaltung verhindern. «Dieser Vorgang ist überaus dynamisch», erklärt Hiller.

«Im Schutz der Chaperone wechselt FhuA ständig innerhalb tausendstel von Sekunden seine Struktur. So kann es energetisch günstige Zustände suchen, die das schrittweise Einfädeln einzelner Proteinabschnitte in die Membran erst ermöglichen.» Mit dem Einbau des letzten Abschnittes erhält FhuA dann seine reife, funktionstüchtige Fass-Struktur. Ungeschützt würde sich FhuA falsch falten und schliesslich verklumpen.

Protein-Chaos ohne Chaperone

Chaperone sind massgeblich an der Bildung funktionstüchtiger Proteine beteiligt. Sie spielen für die richtige Faltung löslicher Proteine eine wichtige Rolle, und sind darüber hinaus für den Einbau von komplexen Proteinmolekülen in die äussere Membran von Bakterien notwendig. Da verschiedene Organellen in pflanzlichen und tierischen Zellen bakteriellen Ursprungs sind, schützen auch hier Chaperone auf ähnliche Weise die Proteine und helfen beim Einbau. Den Studien kommt daher höchste Wichtigkeit zu für Krankheiten durch fehlgefaltete Proteine, wie Alzheimer, Parkinson oder Mukoviszidose.

«Dass Chaperone andere Proteine vor Fehlfaltung schützen und deren korrekte Faltung begünstigen, ist schon länger bekannt. Durch unsere Arbeit konnten wir nun erstmals an biologischen Zellen aufzeigen, wie Chaperone die für die Pharmaforschung wichtigen Membranproteine bei der Faltung unterstützen», erklärt ETH-Professor Daniel Müller. Bisher habe man dies fast ausschliesslich anhand künstlicher Umgebungen untersuchen können. Dadurch habe man jedoch kaum verstanden, wie sich Proteine in die Membran einer Zelle falten.

«Grob gesagt war es bisher so, als ob man eine Kuh aufs Eis stellt, um ihr natürliches Verhalten zu untersuchen, dann aber überraschende Reaktionen beobachtet, von denen wir nicht wissen können, ob sie ‹normal› sind», sagt Müller. «Wir verstehen nun besser, wie die Zelle ihre molekularen Maschinchen in die Zellmembran einbaut, so dass sie dort ihre Aufgaben erfüllen können.»

Originalbeitrag

Johannes Thoma, Björn M Burmann, Sebastian Hiller & Daniel J Müller
Impact of holdase chaperones Skp and SurA on the folding of ß-barrel outer-membrane proteins
Nature Structural & Molecular Biology (2015), doi: 10.1038/nsmb.3087

Weitere Auskünfte

Prof. Sebastian Hiller, Universität Basel, Biozentrum, Tel. +41 61 267 20 82, E-Mail: sebastian.hiller@unibas.ch

Prof. Daniel J. Müller, ETH Zürich, Departement Biosysteme, Tel. +41 61 387 33 07, E-Mail: daniel.mueller@bsse.ethz.ch

Katrin Bühler | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Berichte zu: E coli ETH Faltung Fehlfaltung Membran Membranproteine Molecular Biology Proteine Zelle Zellen protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Deutschlandweit einziges Chinatron an der Uni Ulm: Wegbereiter des bionischen Baumstamms
19.08.2019 | Universität Ulm

nachricht Wie synthetische Zellen schädliche Bakterien bekämpfen
19.08.2019 | DWI – Leibniz-Institut für Interaktive Materialien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: "Qutrit": Komplexe Quantenteleportation erstmals gelungen

Wissenschaftlern der Österreichischen Akademie der Wissenschaften und der Universität Wien ist es gemeinsam mit chinesischen Forschern erstmals gelungen, dreidimensionale Quantenzustände zu übertragen. Höherdimensionale Teleportation könnte eine wichtige Rolle in künftigen Quantencomputern spielen.

Was bislang nur eine theoretische Möglichkeit war, haben Forscher der Österreichischen Akademie der Wissenschaften (ÖAW) und der Universität Wien nun erstmals...

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Crispr-Methode revolutioniert

Forschende der ETH Zürich entwickelten die bekannte Crispr/Cas-Methode weiter. Es ist nun erstmals möglich, Dutzende, wenn nicht Hunderte von Genen in einer Zelle gleichzeitig zu verändern.

Crispr/Cas ist in aller Munde. Mit dieser biotechnologischen Methode lassen sich in Zellen verhältnismässig einfach und schnell einzelne Gene präzise...

Im Focus: Wie schwingen Atome in Graphen-Nanostrukturen?

Innovative neue Technik verschiebt die Grenzen der Nanospektrometrie für Materialdesign

Um das Verhalten von modernen Materialien wie Graphen zu verstehen und für Bauelemente der Nano-, Opto- und Quantentechnologie zu optimieren, ist es...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gedanken rasen zum Erfolg: CYBATHLON BCI Series 2019

16.08.2019 | Veranstaltungen

Impfen – Kleiner Piks mit großer Wirkung

15.08.2019 | Veranstaltungen

Internationale Tagung zur Katalyseforschung in Aachen

14.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie synthetische Zellen schädliche Bakterien bekämpfen

19.08.2019 | Biowissenschaften Chemie

Neuartiger Ventiltrieb spart 20% Treibstoff

19.08.2019 | Energie und Elektrotechnik

Deutschlandweit einziges Chinatron an der Uni Ulm: Wegbereiter des bionischen Baumstamms

19.08.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics