Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Kraftmesser

20.09.2017

Proteine werden häufig als molekulare Maschinen der Zellen beschrieben. Um ihre Funktionsweise zu verstehen, reicht es häufig nicht aus, sich die beteiligten Proteine unter dem Mikroskop anzuschauen. Dort, wo Maschinen arbeiten treten mechanische Kräfte auf, die wiederum Einfluss auf die jeweiligen biologische Prozesse nehmen. Diese extrem kleinen Kräfte können dank molekulare Kraftsensoren in den Zellen gemessen werden. Jetzt haben Forscher am Max-Planck-Institut für Biochemie molekulare Sensoren entwickelt, die intrazellulär auftretende Kräfte mehrerer Proteine in höchster Auflösung im Pikonewton-Bereich messen können. Die Ergebnisse wurden im Fachmagazin Nature Methods veröffentlicht.

Sobald Proteine aneinander ziehen, wirken Kräfte im Pikonewtonbereich. Zellen können solche mechanischen Informationen detektieren und je nach Art des Signals unterschiedlich reagieren. Haftproteine an der Oberfläche von Zellen erkennen zum Beispiel, wie starr ihre Umgebung ist und passen die Proteinzusammensetzung der Zelle an.


Die Entwicklung neuer Fluoreszenz-basierter Biosensoren, welcher unter mechanischer Kraft entfalten, erlaubt die Vermessung molekularer Kräfte entlang spezifischer Strukturen in lebenden Zellen.

© MPI für Biochemie

Um diese minimal wirkenden Kräfte messen zu können, entwickelt die Arbeitsgruppe „Molekulare Mechanotransduktion“ am Max-Planck-Institut molekulare Sensoren. „Diese kleinen Messgeräte funktieren ähnlich wie eine Federwaage“, so Carsten Grashoff, Leiter der Forschungsgruppe.

Der neu entwickelte Sensor besteht aus zwei fluoreszenten Molekülen, die mit einer Art molekularer Feder verbunden sind. Wirkt auf das Molekül eine Kraft von nur wenigen Pikonewton wird die Feder gespannt, was mit einem speziellen Mikroskopieverfahren ausgelesen werden kann.

„Wir sind jetzt in der Lage, die Mechanik mehrerer Moleküle gleichzeitig zu vermessen“, erklärt Carsten Grashoff. Verglichen mit früheren Sensoren können die Wissenschaftler jetzt sagen, welche Proteine unter Kraft stehen und wie viele.

„Beim Tauziehen ziehen vielen Menschen unterschiedlich stark an einem Seil. Einige ruhen sich vielleicht aus und lassen den Vordermann die Arbeit machen. Bei den Proteinen ist das ganz ähnlich. Wir können jetzt ermitteln, welche Proteine zur zellulären Kraftentwicklung beitragen und welcher Prozentsatz dieser Moleküle eigentlich mitmacht“ , erklärt Grashoff.

Der zu messende Kraftbereich ist jetzt auch enger eingrenzbar, das Verfahren erlaubt präzise Messungen in einem Bereich von drei bis fünf Pikonewton. „Wie bei Entwickung von neuen Mikroskopen versuchen auch wir immer bessere Auflösungen zu erreichen, was uns hier gelungen ist“, so Grashoff weiter.

Aufgrund der universellen Wechselwirkung von Kräften in Zellen könnte der neue Sensor in vielen Bereichen von Bedeutung sein. „Zentrale Fragestellungen ergeben sich in der Krebsforschung, denn hier ist schon länger bekannt, dass Tumorzellen in starren Geweben Vorteile haben. Auch für das Verständnis von Muskel- oder Hauterkrankungen könnten die Sensoren neue Einblicke in die Krankheitsmechanismen geben“, schaut Grashoff in die Zukunft. [CM]

Originalpublikation:
P. Ringer, A. Weiβl, A.-L. Cost, A. Freikamp, B. Sabass, A. Mehlich, M. Tramier, M. Rief and C. Grashoff “Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1” Nature Methods, September 2017


Über Carsten Grashoff
Carsten Grashoff studierte von 1997 bis 2001 Angewandte Naturwissenschaft an der Universität Freiberg. Nach seiner Diplomarbeit am Robert Koch Institut in Berlin, promovierte er 2007 an der Ludwig Maximilians Universität München, gefolgt von einem Postdoc Aufenthalt an der Universität von Virginia, USA. Seit 2011 leitet er die unabhängige Forschungsgruppe „Molekulare Mechanotransduktion“ am Max-Planck-Institut für Biochemie in Martinsried. 2014 wurde Grashoff mit dem Early Career Award der Nationalen Akademie der Wissenschaften ausgezeichnet.

Über das Max-Planck-Institut für Biochemie
Das Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München zählt zu den führenden internationalen Forschungseinrichtungen auf den Gebieten der Biochemie, Zell- und Strukturbiologie sowie der biomedizinischen Forschung und ist mit rund 35 wissenschaftlichen Abteilungen und Forschungsgruppen und ungefähr 800 Mitarbeitern eines der größten Institute der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Das MPIB befindet sich auf dem Life-Science-Campus Martinsried in direkter Nachbarschaft zu dem Max-Planck-Institut für Neurobiologie, Instituten der Ludwig-Maximilians-Universität München und dem Innovations- und Gründerzentrum Biotechnologie (IZB). (http://biochem.mpg.de)

Kontakt:
Dr. Carsten Grashoff
Molekulare Mechanotransduktion
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: cgrasho@biochem.mpg.de
www.biochem.mpg.de/grashoff

Dr. Christiane Menzfeld
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - Webseite des Max-Planck-Institutes für Biochemie
http://www.biochem.mpg.de/grashoff - Webseite der Forschungsgruppe „Molekulare Mechanotransduktion“ (Carsten Grashoff)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics