Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekularbiologie: Genabschrift mit integrierter Starthilfe

15.11.2012
Im Zentrum allen Lebens steht die Übersetzung der Gene in Botenmoleküle. Überraschend zeigte sich nun, wie ein molekularer Lotse den Startschuss für die Genabschrift gibt.

In den Genen festgelegte Informationen müssen in das Botenmolekül mRNA übersetzt werden, um als Vorlage für die Synthese von Eiweißen (Proteinen) zu dienen. Proteine sind die wichtigsten Funktionsträger der Zelle, daher ist diese Gen-Transkription für alle Lebensvorgänge essentiell.

Zuständig für die Abschrift ist das zentrale Enzym Polymerase II (Pol II). Um im Zellkern den Anfang eines Gens zu finden, assoziiert Pol II mit einem Protein, dem Transkriptionsfaktor TFIIB. „Ohne diesen Faktor gibt es keine Transkription“, sagt Professor Patrick Cramer, Direktor des Genzentrums der LMU, der mit seinem Team nun zeigen konnte, dass TFIIB nicht nur als Lotse für die Transkription wichtig ist.

Strukturänderung gibt Startsignal

Um die Rolle von TFIIB für die ersten Schritte in der Gen-Transkription aufzuklären, führte das Team von Professor Cramer eine Röntgenstrukturanalyse des Komplexes aus Pol II, TFIIB, DNA und mRNA durch. Dessen dreidimensionale atomare Struktur legte - für die Wissenschaftler völlig überraschend - nahe, dass TFIIB das aktive Zentrum der Polymerase so verändert, dass der Start der Transkription stimuliert wird. Diese Stimulation konnten die Wissenschaftler in funktionalen Folgestudien bestätigen.

„Unsere Beobachtungen erklären, warum die RNA-Polymerase, im Gegensatz zur DNA-Polymerase, die unser Erbgut verdoppelt, ohne einen kurzen Nukleinsäurestrang - einen sogenannten Primer - starten kann“, sagt Cramer und betont: „Diese Ergebnisse sind von grundlegender Bedeutung für die Molekularbiologie und –genetik, denn sie beschreiben einen zuvor rätselhaften Mechanismus der Transkription, ohne den unsere Gene stumm bleiben würden.“

(Nature 14. November 2012) göd

Publikation:
Structure and function of the initially transcribing RNA polymerase II-TFIIB complex
Sarah Sainsbury, Jürgen Niesser, Patrick Cramer
Nature Advance Online, 14.11.2012
doi: 10.1038/nature11715
Kontakt:
Professor Patrick Cramer
Direktor Department Biochemie und Genzentrum der LMU
Fakultät für Chemie und Pharmazie
Tel.: 089 / 2180 – 76965
Fax: 089 / 2180 – 76998
E-Mail: cramer@lmb.uni-muenchen.de
http://www.cramer.genzentrum.lmu.de/

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics