Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekularbiologie - Architekten des Lebens in 3D

24.10.2013
Zehn Jahre arbeiteten LMU-Wissenschaftler um Patrick Cramer daran, die Struktur eines zentralen Schalters für das Zellwachstum aufzuklären. Nun ist ihnen der Durchbruch gelungen – und zwar bei einer Auflösung, die die Lage einzelner Atome preisgibt.

Zellwachstum erfordert die Synthese großer Proteinmengen in den zellulären Proteinfabriken, den Ribosomen. Dazu müssen auch die Ribosomen selbst in großer Zahl von der Zelle produziert werden.

Zu zwei Dritteln bestehen Ribosomen aus ribosomaler RNA, die bis zu 60 Prozent aller RNA in der Zelle ausmacht und durch das Enzym RNA-Polymerase I (Pol I) synthetisiert wird. Ohne Pol I kann keine Proteinproduktion erfolgen, das Enzym ist daher ein zentraler Regulator des Zellwachstums. Geraten Pol I und somit das Zellwachstum außer Kontrolle, entsteht Krebs.

Trotz der großen Bedeutung von Pol I war die Struktur des Enzyms ein ungelöstes Rätsel, weil Pol I eines der größten und komplexesten Proteine darstellt und daher für hoch aufgelöste Strukturanalysen schlecht zugänglich ist. Professor Patrick Cramer, Leiter des Genzentrums der LMU, hat mit seinem Team diesen Meilenstein der Molekularbiologie nun erreicht:

Die Wissenschaftler stellen in der aktuellen Ausgabe des Magazins „Nature“ die dreidimensionale Struktur von Pol I vor – und zwar in einer Auflösung, die alle 14 Untereinheiten des Enzyms lokalisiert und die Lage von knapp 35.000 Atomen (Wasserstoffatome nicht mitgezählt) preisgibt. Damit erhalten die Wissenschaftler einen detaillierten Einblick in die Funktionsweise des Enzyms.

Kristalle im Röntgenlicht

„Entscheidend für den Erfolg war, dass es uns nach zehn Jahren harter Laborarbeit gelungen ist, Kristalle des Enzyms zu züchten, die für eine Röntgenstrukturanalyse des gesamten Komplexes bei hoher Auflösung geeignet sind. Dies war aufgrund der Größe und Komplexität von Pol I sehr schwierig“, berichtet Cramer. Die Kristalle bestehen aus vielen identischen Pol I Molekülen und haben eine regelmäßige Gitterstruktur, die intensive Röntgenstrahlen beugen kann. Durch den Beschuss mit Röntgenstrahlen entsteht ein charakteristisches Beugungsmuster, aus dem die Proteinstruktur errechnet werden kann.

Im Ergebnis zeigte die Strukturanalyse interessante Unterschiede zu der entfernt verwandten RNA-Polymerase II (Pol II), die die Baupläne für die Proteinsynthese liefert. Die Struktur von Pol II konnte Cramer bereits im Jahr 2000 während seiner Zeit als Postdoktorand an der amerikanischen Universität Stanford aufklären.

Türöffner für das aktive Zentrum

Pol I unterscheidet sich von Pol II unter anderem dadurch, dass sie zusätzliche Elemente im aktiven Zentrum enthält. Die zusätzlichen Strukturen ermöglichen die Regulation des Enzyms, indem sie dafür sorgen, dass ein tiefer Spalt, der das aktive Zentrum beherbergt, sowohl eine „geschlossene“ als auch eine „geöffnete“ Form annehmen kann. Da das Enzym mit offenem Spalt inaktiv ist, vermuten die Wissenschaftler, dass Pol I mithilfe dieses Regulationsmechanismus gehemmt wird, um unkontrolliertes Zellwachstum zu verhindern. Diese Ergebnisse könnten für die Entwicklung von Krebsmedikamenten relevant werden, die darauf abzielen, das Zellwachstum zu verlangsamen.

„Vermutlich haben wir mit dem Wechsel zwischen inaktivem und
aktivem Zustand unerwartet einen generellen Mechanismus für die Regulation genetischer Information in der Zelle entdeckt“, sagt Cramer. Als nächstes werden die Wissenschaftler untersuchen, wie Polymerasen ihre Zielgene erkennen. So wollen sie verstehen, warum verwandte Polymerasen nur jeweils eine Art von RNA herstellen. Langfristig soll in einem molekularen Film gezeigt werden, wie ein Gen angeschaltet wird, wenn es in der Zelle benötigt wird.

(Nature 2013)göd

Publikation:
RNA polymerase I structure and transcription regulation
Christoph Engel, Sarah Sainsbury, Alan C. Cheung, Dirk Kostrewa, and Patrick Cramer

Nature 2013

Kontakt:
Prof. Dr. Patrick Cramer
Genzentrum der LMU
Tel.: (+49) 89-2180-76965 (Sekretariat)
Fax: (+49) 89-2180-76998
cramer@genzentrum.lmu.de
http://www.cramer.genzentrum.lmu.de/

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Weichenstellung für Axonverzweigungen
26.09.2018 | Max-Planck-Institut für Biochemie

nachricht Vielfalt im Gehirn – Wie Millionen unserer Nervenzellen einzigartig werden
26.09.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weichenstellung für Axonverzweigungen

Unser Gehirn ist ein komplexes Netzwerk aus unzähligen verknüpften Nervenzellen. Diese haben lange verzweigte Fortsätze, sogenannte Axone, um die Anzahl der möglichen Interaktionen zu erhöhen. In Zusammenarbeit mit Wissenschaftlern aus Portugal und Frankreich untersuchten Forscher am Max-Planck-Institut für Biochemie (MPIB) die Prozesse, die zu solch Zellverzweigungen führen. Sie fanden einen neuartigen Mechanismus, der die Verzweigung von Mikrotubuli, einem mechanischen Stabilisierungssystems in den Zellen, und somit der Axone auslöst. Wie die Forscher in Nature Cell Biology berichten, spielt die neu entdeckte Mikrotubuli-Dynamik eine Schlüsselrolle bei der neuronalen Entwicklung.

Von den Zweigen eines Baums bis hin zur Eisenbahnweiche – unsere Umwelt ist voller starrer verzweigter Objekte. Sie sind so allgegenwärtig in unserem Leben,...

Im Focus: Working the switches for axon branching

Our brain is a complex network with innumerable connections between cells. Neuronal cells have long thin extensions, so-called axons, which are branched to increase the number of interactions. Researchers at the Max Planck Institute of Biochemistry (MPIB) have collaborated with researchers from Portugal and France to study cellular branching processes. They demonstrated a novel mechanism that induces branching of microtubules, an intracellular support system. The newly discovered dynamics of microtubules has a key role in neuronal development. The results were recently published in the journal Nature Cell Biology.

From the twigs of trees to railroad switches – our environment teems with rigid branched objects. These objects are so omnipresent in our lives, we barely...

Im Focus: Kupfer-Aluminium-Superatom

Äußerlich sieht der Cluster aus 55 Kupfer- und Aluminiumatomen aus wie ein Kristall, chemisch hat er jedoch die Eigenschaften eines Atoms. Das hetero-metallische Superatom, das Chemikerinnen und Chemiker der Technischen Universität München (TUM) hergestellt haben, schafft die Voraussetzung für die Entwicklung neuer, kostengünstiger Katalysatoren.

Chemie kann teuer sein. Zum Reinigen von Abgasen beispielsweise benutzt man Platin. Das Edelmetall dient als Katalysator, der chemische Reaktionen...

Im Focus: Hygiene im Handumdrehen – mit neuem Netzwerk „CleanHand“

Das Fraunhofer FEP beschäftigt sich seit Jahrzehnten mit der Entwicklung von Prozessen und Anlagen zur Reinigung, Sterilisation und Oberflächenmodifizierung. Zur Bündelung der Kompetenzen vieler Partner wurde im Mai 2018 das Netzwerk „CleanHand“ zur Entwicklung von Systemen und Technologien für saubere Oberflächen, Materialien und Gegenstände ins Leben gerufen. Als Partner von „CleanHand“ präsentiert das Fraunhofer FEP im Rahmen der Messe parts2clean, vom 23.-25. Oktober 2018, in Stuttgart, am Stand der Fraunhofer-Allianz Reinigungstechnik (Halle 5, Stand C31), das Netzwerk sowie aktuelle Forschungsschwerpunkte des Institutes im Bereich Hygiene und Reinigung.

Besonders um die Hauptreisezeiten gehen vermehrt Testberichte und Studien über die Reinheit von europäischen Raststätten, Hotelbetten und Freibädern durch die...

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fachkonferenz "Automatisiertes und autonomes Fahren"

25.09.2018 | Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Intelligentes Order Management in einer einzigen Software

26.09.2018 | Informationstechnologie

Weichenstellung für Axonverzweigungen

26.09.2018 | Biowissenschaften Chemie

Biosolarzelle produziert Wasserstoff

26.09.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics