Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle in Bewegung

26.02.2013
Viele Funktionen von Biomolekülen können erst verstanden werden, wenn die Dynamik ihrer Bewegungen unter zellähnlichen Bedingungen bekannt ist.

Forscher aus Innsbruck und New York setzen ein hochmodernes Verfahren ein, mit dem sie das dynamische Verhalten einzelner Biomoleküle sehr genau ermitteln können. Es liefert wichtige Einsichten in die Funktionsweise von Genschaltern.


Riboschalter regulieren die Biosynthese und den Transport des Metaboliten Thiaminpyrophosphat (TPP). Grafik: Uni Innsbruck

Die DNA hat eine kleine Schwester, die Boten-RNA. Diese transportiert die Erbgut-Information in die Proteinfabriken der Zelle. Im Jahr 2000 entdeckten Wissenschaftler um Ronald R. Breaker, dass die Boten-RNA Kontrollelemente enthalten kann, mit denen diese Moleküle ihr eigenes Gen ein- oder ausschalten können. Bakterien dient dies zum Beispiel dazu, viele Stoffwechselvorgänge zu regulieren. So passen sie ihre Produktionsmaschinerie dem aktuellen Bedarf in einer Zelle an. Diese sogenannten Riboschalter haben auch das Interesse der Arbeitsgruppe um Prof. Ronald Micura am Institut für Organische Chemie und dem Centrum für Molekulare Biowissenschaften der Universität Innsbruck (CMBI) geweckt. Gemeinsam mit Wissenschaftlern des Weill Cornell Medical College in New York nutzen sie eine neue Technik, den Single-Molecule Fluorescence Resonance Energy Transfer (smFRET), um die Dynamik einzelner Riboschalter-Moleküle zu untersuchen. „Die biologische Aktivität eines Molekül erschließt sich selten nur aus der chemischen Struktur“, sagt Ronald Micura. „Entscheidend ist meist, wie sich diese Struktur im Laufe der Zeit ändert, also die Beweglichkeit des Moleküls.“

Know-how aus Tirol

Die Chemiker um Ronald Micura sind weltweit führend bei der synthetischen Herstellung und Modifizierung von Biomolekülen. Mit üblichen Syntheseverfahren ist es nämlich kaum möglich, mehr als 50 Basenbausteine gezielt zusammenzusetzen. Micura und seine Mitarbeiter haben ein raffiniertes Verfahren entwickelt, mit dem sie chemisch synthetisierte RNA-Teile nach Belieben kombinieren können. Sie greifen dabei auf einen Trick der Natur zurück: Bestimmte Enzyme können RNA-Strangbrüche reparieren, indem sie die Teile durch chemische Bindungen wieder aneinanderfügen. Bietet man diesen Enzymen die künstlich hergestellte RNA an, knüpfen sie auch daraus lange Ketten. So bilden die Chemiker natürliche Riboschalter nach und markieren diese an den entscheidenden Stellen mit Farbstoffen. Im Labor der New Yorker Forscher werden diese oft in monatelanger Feinarbeit hergestellten Riboschalter dann mit Hilfe von Laserlicht analysiert.

Auf größere biomolekulare Maschinen ausweiten

In der amerikanischen Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) haben die Forscher nun Ergebnisse der Untersuchung eines der verbreitetsten Riboschalter-Moleküle veröffentlicht. Diese kommen in Bakterien, Pflanzen und Pilzen vor und regulieren die Biosynthese und den Transport des Metaboliten Thiaminpyrophosphat (TPP), einem Abkömmling von Vitamin B1. Mit dem neuen Verfahren können die Forscher die Bewegungen einzelner Moleküle im Millisekundentakt beobachten. „Wir waren sehr überrascht zu sehen, wie beweglich die beiden Arme des Moleküls sind, welche in der Kristallstruktur eine starre Interaktion implizieren“, erzählt Micura. „Dort liegt auch die Bindetasche des Metaboliten, der an die RNA andockt und das entsprechende Gen abschaltet.“ Möglich ist diese genaue Beobachtung nur durch die selektive Modifizierung der RNA-Moleküle in den Innsbrucker Labors. Micura und sein amerikanischer Partner haben sich das entsprechende Verfahren in der Zwischenzeit auch patentieren lassen und wollen nun in einem gemeinsamen, von der National Science Foundation NSF und dem Wissenschaftsfonds FWF geförderten Projekt ihre Techniken auch auf noch größere Biomoleküle ausweiten. „Wir wollen den gesamten Translations-Mechanismus - als jene Maschinerie, die aus Erbgutinformation Proteine erzeugt - untersuchen“, blickt Micura bereits in die Zukunft.

Publikation: Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Andrea Haller, Roger B. Altman, Marie F. Soulière, Scott C. Blanchard, and Ronald Micura. PNAS 2013 DOI: 10.1073/pnas.1218062110

Rückfragehinweis:
Ronald Micura
Institut für Organische Chemie
Universität Innsbruck
Tel.: +43 512 507-57710
E-Mail: Ronald.Micura@uibk.ac.at
Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wenn für Fischlarven die Nacht zum Tag wird
18.01.2019 | Universität Siegen

nachricht Handgestrickte Moleküle
18.01.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zeitwirtschafts- und Einsatzplanungsprozesse effizient und transparent gestalten mit dem Workforce Management System der GFOS

18.01.2019 | Unternehmensmeldung

Der Schlaue Klaus erlaubt keine Fehler

18.01.2019 | Informationstechnologie

Neues Verfahren zur Grundwassersanierung: Mit Eisenoxid gegen hochgiftige Stoffe

18.01.2019 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics