Modellbausatz für modifizierte DNA-Nukleotide

Wissenschaftlerinnen und Wissenschaftlern der Universität Konstanz ist es gelungen, erstmals die Kristallstrukturen für Analoga aller vier natürlichen Bausteine des Erbguts zu bestimmen.

Die Forscherinnen und Forscher der Konstanzer Graduiertenschule Chemische Biologie ermittelten die 3D-Struktur von sechs modifizierten DNA-Nukleotiden im Komplex mit der verkürzten DNA-Polymerase aus „Thermus aquaticus“. Ihre Forschungsergebnisse wurden jüngst als Titelbeitrag des Wissenschaftsjournals „Journal of the American Chemical Society“ (JACS) veröffentlicht.

Die Konstanzer Strukturanalysen geben Einblicke in das Bindungsverhalten von modifizierten Nukleotiden und erlauben dadurch Prognosen für die Kompatibilität von künstlich gestalteten Nukleotiden mit den natürlichen Enzymen, ohne wie bislang üblich das Bindungsverhalten durch reines Ausprobieren auszutesten. Die Forschungsergebnisse ermöglichen ein rationales Design von modifizierten Nukleotiden und sind somit ein wesentlicher Schritt voran im Bereich der synthetischen Biologie. Die gezielte Modifikation von Nukleotiden bildet die Grundlage für eine Vielzahl von biotechnologischen Anwendungen und wird unter anderem für die DNA-Sequenzierung eingesetzt.

Die Konstanzer Forscherinnen und Forscher nutzten die Röntgenstrukturanalyse als Methode, um die 3D-Struktur der synthetisierten Nukleotide im Komplex mit der DNA-Polymerase zu bestimmen. Anhand der ermittelten Kristallstrukturen analysierten sie die strukturellen Bedingungen, nach denen künstliche Nukleotide von natürlichen Enzymen akzeptiert werden. Aufbauend auf ihren Strukturanalysen ergründeten sie, wie Modifikationen beschaffen sein müssen, um beliebige weitere chemische Bausteine an die Nukleotide zu binden. Mit ihren Rückschlüssen erforschten die Wissenschaftlerinnen und Wissenschaftler damit die Grundlagen, um nahezu beliebige chemische Bausteine an die DNA anzuhängen. „Es ist vergleichbar mit einer Art Werkzeugkasten, der uns die Instrumente bietet, um Modifikationen je nach Zweck anzupassen“, erläutert Konrad Bergen, Doktorand der Graduiertenschule Chemische Biologie an der Universität Konstanz. Gemeinsam mit Anna-Lena Steck, ebenfalls Doktorandin der Graduiertenschule Chemische Biologie, führte er das Forschungsprojekt in den Arbeitsgruppen von Prof. Dr. Andreas Marx, Prof. Dr. Wolfram Welte und Prof. Dr. Kay Diederichs durch.

Die erfolgreiche Forschungsarbeit profitierte dabei wesentlich von der engen Interaktion der Konstanzer Fachbereiche Biologie und Chemie. „In vielen Fällen schickt man für eine Röntgenstrukturanalyse Proben an Kooperationspartner und wartet dann viele Wochen auf ein Ergebnis. Hier in Konstanz konnte ich einfach im entsprechenden Labor nebenan vorbeigehen und direkt mit den Kollegen die unmittelbaren Ergebnisse der Strukturanalyse diskutieren“, veranschaulicht die Chemikerin Anna-Lena Steck ihre effiziente Zusammenarbeit mit den Konstanzer Strukturbiologen.

Originalveröffentlichung:
Bergen, K., Steck, A., Strütt, S., Baccaro, A., Welte, W., Diederichs, K., Marx, A. J. Am. Chem. Soc. 2012, DOI: 10.1021/ja3017889.

Hinweis an die Redaktionen:
Ein Foto kann im Folgenden heruntergeladen werden:
http://www.pi.uni-konstanz.de/2012/117.jpg

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de

Prof. Dr. Andreas Marx
Universität Konstanz
Sprecher der Graduiertenschule Chemische Biologie
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 / 88-5139
E-Mail: Andreas.Marx@uni-konstanz.de

Media Contact

Julia Wandt idw

Weitere Informationen:

http://www.uni-konstanz.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer