Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit voller Kraft auf Erregerjagd

22.03.2017

HZI-Forscher haben Mechanismus aufgeklärt, wie Zellen mithilfe von Proteinfilamenten Kraft erzeugen und sich effektiv bewegen

Die Zellen des menschlichen Körpers besitzen in ihrem Inneren ein flexibles Gerüst, das Zytoskelett, welches unter anderem aus Aktinfilamenten besteht und sich in stetigem Auf- und Abbau befindet. So können sich Zellen verformen oder bewegen.


Melanomzelle bei der Wanderung, deren Bewegung nach oben links durch Formin-Proteine (grün) unterstützt wird.

HZI / Frieda Kage

Diese Fähigkeit ist zum Beispiel für die Embryonalentwicklung, die Wundheilung und ein funktionierendes Immunsystem wichtig. Dabei müssen Zellen Energie und Kraft aufwenden, um sich durch Gewebe zu bewegen. Beispielsweise dringen Immunzellen in alle Bereiche unseres Körpers vor, um Krankheitserreger zu finden und zu bekämpfen. Umgekehrt können auch manche Erreger das Zytoskelett missbrauchen, um in Zellen einzudringen.

Forscher des Helmholtz-Zentrums für Infektionsforschung (HZI) und der Technischen Universität Braunschweig haben nun die molekularen Grundlagen dafür aufgeklärt, wie Zellen sich effektiv vorwärtsbewegen können durch die Ausbildung von schubkräftigen Ausstülpungen der Zellmembran.

Die Forscher konnten mit der CRISPR/Cas-Technologie erstmals die genaue Funktion einer speziellen Proteinfamilie, der Formine, bei der Ausbildung dicht verzweigter Aktinnetzwerke bestimmen. Die Braunschweiger Wissenschaftler kooperierten dabei eng mit der Medizinischen Hochschule Hannover (MHH) und der Universität Leipzig. Ihre Ergebnisse veröffentlichten sie nun im renommierten Fachjournal Nature Communications.

„Wenn sich Zellen durch Gewebe des Körpers bewegen, bilden sie dazu verschiedene Ausstülpungen an ihrer Vorderseite aus: segelartige Lamellipodien, fingerförmige Filopodien, aber auch bläschenartige Ausstülpungen“, sagt Klemens Rottner, Leiter der HZI-Arbeitsgruppe „Molekulare Zellbiologie“ und Professor am Institut für Zoologie der Technischen Universität Braunschweig. Das Zytoskelett der Zellen spielt dabei eine entscheidende Rolle. Es ist allerdings im Gegensatz zum Knochenskelett kein starres Stützsystem, sondern ein dynamisches Geflecht.

Um ihre Form zu verändern oder sich auszubreiten, brauchen Zellen spezielle Mikrofilamente winzige, nur nanometerdicke Fasern aus dem Strukturprotein Aktin. Durch das Zusammenspiel der Aktinfilamente mit speziellen Myosin-Proteinen wird Zellbewegung möglich. „Die Aktin-Myosin-Filamente sind gewissermaßen die Muskeln der Zelle“, sagt Rottner.

Im Detail betrachtet besteht ein Lamellipodium aus quervernetzten und parallel ausgerichteten Bündeln von Aktinfilamenten, die von einer dünnen Zellmembran umschlossen sind. Diese Aktinfilamente sind am Vordersaum der Ausstülpung in der Zellmembran verankert und schieben sie durch den stetigen Anbau von Aktinbausteinen vorwärts, während sie an ihrer Rückseite fortwährend abgebaut werden. Durch diesen kontinuierlichen Umbau von Aktinfilamenten bewegt sich die Zelle vorwärts.

Bisher war bekannt, dass ein bestimmter Proteinkomplex für den Aufbau des Aktinnetzwerks in den Lamellipodien verantwortlich ist – der sogenannte Arp2/3-Komplex. Die Forscher konnten nun eine weitere wichtige Komponente nachweisen: An den schnell wachsenden Enden der Aktinfilamente binden Proteine aus der Familie der Formine. „Die Rolle dieser Proteine in Lamellipodien war bislang nicht klar.

Man dachte, sie würden lediglich die Geschwindigkeit steuern, mit der Bausteine an die Filamente des Netzwerks angebaut werden“, sagt Rottner. Jedoch fanden die Autoren der Studie heraus, dass diese Proteine vor allem die Filamentdichte und die Stabilität des Aktinnetzwerks regulieren. Anders als der Arp2/3-Komplex scheinen diese Formine zudem das wachsende Aktinfilament mit der Zellmembran zu verbinden, wodurch die entstehende Kraft direkt auf die Membran übertragen werden kann und somit eine effiziente Vorwärtsbewegung der Zelle gewährleistet wird.

Für seine Untersuchungen hat das Forscherteam mittels CRISPR/Cas-Technologie Formine sowohl in Tumor- als auch in Bindegewebszellen von Mäusen ausgeschaltet. „Diese moderne molekularbiologische Methode erlaubte uns, effizient und kostengünstig die Bildung zweier funktionsverwandter Formine gleichzeitig und vollständig auszuschalten“, sagt Frieda Kage, Erstautorin der Studie und Wissenschaftlerin im Team von Rottner.

„So konnten wir beweisen, dass diese Formine nicht essenziell für die Ausbildung der Lamellipodien selbst sind, denn durch den Arp2/3-Komplex wird das Aktinnetzwerk trotzdem gebildet“, ergänzt die Nachwuchswissenschaftlerin. „Allerdings war das Netzwerk viel weicher, weil sowohl die Dichte als auch die räumliche Anordnung der Filamente verändert waren.“

Klemens Rottner fasst zusammen: „Nur in der Kombination des Arp2/3-Proteinkomplexes mit Forminen können die Zellen stabile, dicht verzweigte Aktinnetzwerke ausbilden. Wenn die Formine fehlen, werden die Zellen in ihrer Beweglichkeit sehr geschwächt, weil sie sich durch das zu weiche Aktinnetzwerk nicht effizient vorwärtsschieben können.“

Die im Bereich von Nano-Newtonliegenden Vorschubkräfte der Zellen mit und ohne Formine konnten von den Forschern direkt gemessen werden. Dazu nutzten sie ein AFM-Rasterkraftmikroskop in Kooperation mit Prof. Josef Käs vom Institut für Experimentelle Physik I der Universität Leipzig. „In den Zellen, denen Formine fehlten, konnten wir eine Reduktion der Vorschubkräfte um 75 Prozent messen“, sagt Rottner. „Diese drastisch reduzierte Kraftentwicklung erklärt, warum Zellen ohne diese Formine nur sehr langsam migrieren“, ergänzt Kage.

Interessanterweise sind diese Formine mit bestimmten Krebsarten wie Karzinomen und Melanomen eng assoziiert: Große Forminmengen gehen bei Patienten häufig mit aggressiver Metastasenbildung und der Invasion der Krebszellen in andere Gewebe einher. Die Daten der neuen Studie erklären mechanistisch, warum sich diese Zellen besser bewegen.

„Da vor allem auch Immunzellen Kräfte aufwenden müssen, um zu Krankheitserregern zu gelangen, spielt für uns die Erforschung solcher Bewegungsprozesse eine entscheidende Rolle bei der Abwehr von Infektionskrankheiten. Wir müssen diese Prozesse genau verstehen, um mögliche neue Ansatzpunkte für Therapien zu finden“, sagt Klemens Rottner. „Zudem nutzen viele Bakterien und Viren die Polymerisationskräfte von Aktinfilamenten, entweder um in Zellen einzudringen, sich in diesen zu bewegen, oder auch, um noch nicht betroffene Nachbarzellen zu infizieren.“

Die Ergebnisse der aktuellen Studie dienen als Ausgangsbasis für Versuche mit verschiedensten Krankheitserregern wie Salmonellen, Shigellen und Listerien, da diese Erreger dafür bekannt sind, sich der durch das Aktinzytoskelett erzeugten Kräfte der Wirtszelle zu bedienen. Die hier untersuchten Formine gezielt in einer frühen Phase des Kontakts von Erreger und Wirtszelle zu beeinflussen, könnte einen aussichtsreichen Ansatz darstellen, um Infektionsprozesse zu unterbinden, hoffen die Wissenschaftler.

Originalpublikation:
Kage, F. et al.: FMNL formins boost lamellipodial force generation. Nature Communications 2017; DOI: 10.1038/ncomms14832
http://www.nature.com/articles/ncomms14832

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. www.helmholtz-hzi.de

Sie finden diese Pressemitteilung und Pressefotos auf der HZI-Webseite unter folgendem Link https://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/mit_voll...

Weitere Informationen:

http://www.nature.com/articles/ncomms14832 - Link zur Publikation
https://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/mit_voll... - Link zur Pressemitteilung

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bienen brauchen es bunt
20.08.2018 | Julius-Maximilians-Universität Würzburg

nachricht Künstliche Enzyme aus DNA
20.08.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenverschränkung erstmals mit Licht von Quasaren bestätigt

20.08.2018 | Physik Astronomie

1,6 Millionen Euro für den Aufbau einer Forschungsgruppe zu Quantentechnologien

20.08.2018 | Förderungen Preise

IHP-Technologie darf in den Weltraum fliegen

20.08.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics