Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit den richtigen Algorithmen die Analyse des Zellzyklus optimieren

07.01.2016

Wissenschaftler des Helmholtz Zentrums München haben einen neuen Ansatz gefunden, der einzelne Phasen des Zellzyklus mittels bildgebender Durchflusszytometrie besser sichtbar macht. Dabei ließen sie Fluoreszenzmarker weg und bedienten sich des maschinellen Lernens. Mit einer Bildverarbeitungssoftware extrahierten sie hunderte Merkmale aus Hellfeld- und Dunkelfeldbildern. Mit Hilfe dieser Daten können Algorithmen generiert werden, die die Zellen digital sortieren.

Bisher wurden Fluoreszenzstoffe benutzt, um die Zellen einer Zellzyklusphase zuzuordnen. Die Chemikalien schaden Zellen und verfälschen die Ergebnisse. Zusammen mit Kollegen vom Broad Institute of MIT and Harvard, USA, sowie von der Swansea University, der Newcastle University und dem The Francis Crick Institute, UK, haben Wissenschaftler am Institute of Computational Biology (ICB) des Helmholtz Zentrums München jetzt eine Alternative entwickelt.


Hell- und Dunkelfeldbilder aus bildgebender Durchflusszytometrie werden mittels maschinellem Lernen einer Zellzyklusphase zugewiesen | Quelle: Thomas Blasi, ICB

„Wir haben zwei im Allgemeinen vernachlässigte Datenquellen - die Hell- und Dunkelfeldbilder - genutzt“, sagt Thomas Blasi, Doktorand am ICB und Erstautor der Veröffentlichung. „Die Auswertung dieser Daten konnten wir für maschinelles Lernen einsetzen“.

Somit war es möglich, die Zellen nicht nur zu klassifizieren, sondern eine digitale Sortierung von hoher Spezifität zu erreichen. Das Helmholtz Zentrum München hat aufgrund der Ergebnisse nun gemeinsam mit dem Broad Institute ein Patent angemeldet.

„Die computergestützte Klassifizierung von Zellen anhand großer Populationen von Zellbildern eröffnet neue Perspektiven. Sie könnte auch in vielen anderen Zusammenhängen, also nicht nur für Zellzyklen, Anwendung finden“, ergänzt Prof. Dr. Dr. Fabian Theis, Direktor des ICB.

Weiter Information
Original-Publikation:
Blasi T. et al. (2016). Label-free cell cycle analysis for high-throughput imaging flow cytometry, Nature Communications.
DOI: 10:1038/ncomms10256 (open access) .

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören.(http://www.helmholtz-muenchen.de/)

Das Institut für Computational Biology (ICB) führt datenbasierte Analysen biologischer Systeme durch. Durch die Entwicklung und Anwendung bioinformatischer Methoden werden Modelle zur Beschreibung molekularer Prozesse in biologischen Systemen erarbeitet. Ziel ist es, innovative Konzepte bereitzustellen, um das Verständnis und die Behandlung von Volkskrankheiten zu verbessern.(http://www.helmholtz-muenchen.de/icb)

Weitere Informationen:

http://www.helmholtz-muenchen.de/

Susanne Eichacker | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Formaldehyd-Herstellung - Fünfmal effektiver mit Machine Learning
14.11.2019 | Ludwig-Maximilians-Universität München

nachricht Bauplan eines bakteriellen Kraftwerks entschlüsselt
13.11.2019 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hitzesommer, Überschwemmungen und Co. – Vor welchen Herausforderungen steht die Pflanzenzüchtung der Zukunft?

14.11.2019 | Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Hitzesommer, Überschwemmungen und Co. – Vor welchen Herausforderungen steht die Pflanzenzüchtung der Zukunft?

14.11.2019 | Veranstaltungsnachrichten

Neue Erkundungsmethode für die Geothermie

14.11.2019 | Geowissenschaften

Schmieden statt Schweißen: Stoffschlüssige Verbindung durch Umformen

14.11.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics