Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mister Raney bekommt Konkurrenz - Ein neuer Katalysator auf Nickel-Basis nutzt Nano-Strukturen

16.07.2018

Chemiker am Leibniz-Institut für Katalyse (LIKAT Rostock), entwickelten einen Katalysator auf der Basis von nickelhaltigen Nano-Strukturen, mit dem sich Verfahren in der Grundstoff- und Synthesechemie stark vereinfachen lassen. Der neue Katalysator vermag Doppelbindungen zwischen Kohlenstoff-Atomen, z.B. in ungesättigten Fettsäuren, effektiv in Einfachbindungen umzuwandeln und gleichzeitig Molekülgruppen mit sensiblen Funktionen zu schonen. Damit ist er dem „Evergreen“-Standard in diesem Bereich hoch überlegen, einem Katalysator namens Raney-Nickel, der seit knapp hundert Jahren verwendet wird. SCIENCE ADVANCES hat das Paper dazu veröffentlicht.

Raney-Nickel, ein dunkles Pulver, war 1925 von dem US-amerikanischen Ingenieur Murray Raney (1885–1966) für das Härten von Pflanzenölen entwickelt worden. Nickel fungiert in diesem Katalysator als aktives Metall, das den Ausgangsstoff zur chemischen Reaktion mit Wasserstoff anregt. Noch heute wird der Allrounder Raney-Nickel in modernen Synthesen komplexer organischer Moleküle, wie Naturstoffen, als Standard-Katalysator genutzt.


Nachteil: leicht entflammbar

Doch dieses Arbeitspferd der Katalyse hat einen entscheiden Nachteil. „Raney-Nickel beginnt bei Kontakt mit Sauerstoff sofort zu brennen“, erläutert Pavel Ryabchuk, Mitautor des Artikels bei SCIENCE ADVANCES. Der Katalysator muss also konsequent vor Luft geschützt werden und ist deshalb umständlich zu handhaben.

Und es gibt noch einen zweiten Nachteil. Raney-Nickel attackiert auch funktionelle Gruppen. Das mögen Chemiker nicht. Ryabchuk: „So gehen gerade in komplexen Molekülen, wie sie z.B. für Medikamente benötigt werden, wichtige Eigenschaften verloren.“

Expertise für Nano-Partikel

Für die Wissenschaftler um Matthias Beller, Direktor des LIKAT, war das Grund genug nach Alternativen zu fahnden. Als Pavel Ryabchuk, der an der Lomonossow-Universität studiert und an der University of Kansas promoviert hatte, als Postdoktorand in den Bereich von Matthias Beller kam, profitierte er u.a. von den Arbeiten der Forschergruppe um Kathrin Junge. Zur Expertise dieser Gruppe zählt die Entwicklung von Nano-Katalysatoren. Das heißt, die Gruppe beherrscht in ihren Laboren Strukturen von Millionstel Millimetern, was von der Größenordnung im Bereich einzelner Moleküle liegt.

Das Team von Kathrin Junge, ebenfalls Mitautorin des SCIENCE-ADVANCES-Artikels, hat Nano-Katalysatoren bisher auf Basis von Kobalt und Eisen entwickelt. Nun lag es als Ersatz für Raney-Nickel nahe zu schauen, inwieweit Nickel für Nano-Strukturen taugt. Die Experimente verliefen positiv. Und als Trägermaterial für das Nickel erwies sich Siliziumoxid, d.h. Quarzsand, als besonders geeignet.

Prozedur bei Tausend Grad Celsius

So entstehen die Nano-Partikel: Die Wissenschaftler mischen einen Molekülkomplex, der Nickel enthält, zusammen mit Quarzsand in technischem Alkohol. Anschließend wird das Ganze auf Temperaturen bis tausend Grad Celsius erhitzt. Bei dieser Prozedur entsteht elementares Silizium, das mit Nickel reagiert und zusammen mit ihm Nanopartikel bildet.

Die Substanz nennt sich Nickel-Silizid und ist wie Raney-Nickel ein dunkles Pulver. Doch anders als dieser Katalyse-Veteran arbeitet Nickel-Silizid äußerst selektiv. Der neue Nickel-Katalysator sorgt dafür, dass die C=C-Doppelbindungen wie geplant hydriert werden, wobei die funktionell wichtige Molekülgruppen verschont bleiben. Außerdem entflammt er unter Laborbedingungen nicht, ist also viel einfacher zu handhaben als sein traditioneller Vorgänger.

Ausbeute steigt

Die Größe der Nanopartikel schwankt zwischen 20 und 70 Nanometer, abhängig von der Temperatur am Ende des Herstellungsprozesses. Pavel Ryabchuk testete die Aktivität des neuen Katalysators an hunderten Substanzen: „Er war immer aktiv.“ Und im Vergleich mit Raney-Nickel lag die Ausbeute stets höher.

Als Grundlagenforscher wüssten Matthias Beller, Kathrin Junge und Pavel Ryabchuk natürlich gern, was den Ausschlag für die exzellente Aktivität ihres neuen Katalysators gibt: „Warum ist der so gut?“ Liegt es an der Größe der Nanopartikel? Spielt womöglich nicht nur Nickel, sondern auch das Silizium eine Rolle?

Kathrin Junge ist sich sicher: „Weltweit werden Teams unsere Ergebnisse in ihren Labors nachvollziehen, neue Erkenntnisse gewinnen und zusammen werden wir einer Antwort näherkommen.“ Und für ihren jungen russischen Kollegen, sagt sie, sei diese Publikation in SCIENCE ADVANCES, Online-Ableger des renommierten Magazins SCIENCE, die beste Empfehlung für die weitere Karriere.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Matthias Beller, Matthias.beller@catalysis.de
Dr. Kathrin Junge, kathrin.junge@catalysis.de

Originalpublikation:

DOI: 10.1126/sciadv.aat0761

Dr. Barbara Heller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.catalysis.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das genetische Geheimnis des Nachtsehens
25.02.2020 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Muskelschwund bei Krebs: Botenstoff hilft beim Muskelaufbau
25.02.2020 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Krankheiten ohne Medikamente heilen

Fraunhofer-Forschende wollen mit Mikroimplantaten Nervenzellen gezielt elektrisch stimulieren und damit chronische Leiden wie Asthma, Diabetes oder Parkinson behandeln. Was diese Therapieform so besonders macht und welche Herausforderungen die Forscher noch lösen müssen.

Laut einer Studie des Robert-Koch-Instituts ist jede vierte Frau von Harninkontinenz betroffen. Diese Form der Blasenschwäche wurde bislang durch ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Plasmonen im atomaren Flachland

25.02.2020 | Informationstechnologie

Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

25.02.2020 | Informationstechnologie

Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

25.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics