Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Miniatur-Pumpe

22.08.2013
Polymergel antwortet kontinuierlich auf vorübergehenden Reiz

Apparate benötigt. Amerikanische Forscher stellen in der Zeitschrift Angewandte Chemie jetzt eine Mikro-Pumpe vor. Sie basiert auf Mikropartikeln aus einem Polymergel und startet bei Bestrahlung mit UV-Licht. Das Besondere: Das Material pumpt kontinuierlich weiter, auch wenn der Stimulus vorüber ist.


Forschern der Pennsylvania State University ist es gelungen ein Polymerkügelchen zu synthetisieren, dass nach einem Aktivierungsreiz durch UV-Licht kontinuierlich eine Flüssigkeit pumpt, selbst nachdem das UV-Licht wieder abgeschaltet wurde. (c) Wiley-VCH

Die winzigen Pumpen, die das Team um Ayusman Sen und Scott T. Phillips von der Pennsylvania State University entwickelt haben, basieren auf Polymergel-Kügelchen von 300 µm Durchmesser, deren Oberfläche mit zwei verschiedenen Molekülen bestückt wird. Sorte 1 wird unter UV-Licht abgespalten. Es zerfällt dabei in CO2, Protonen, Fluoridionen und ein kleines organisches Molekül. Der besondere Trick: Die Fluoridionen spalten dann Molekülsorte 2 von der Oberfläche der Kügelchen ab – auch wenn kein UV-Licht mehr an ist. Sorte 2 zerfällt ebenfalls in CO2, Protonen, Fluoridionen und ein kleines organisches Molekül. Da immer weiter Fluorid freigesetzt wird, kommt die Reaktion erst zum Erliegen, wenn alle Moleküle der Sorte 2 aufgebraucht sind.

Wieso „pumpen“ die Kügelchen? Die freigesetzten Moleküle und Ionen diffundieren von der Oberfläche der Kügelchen weg und bilden einen Konzentrationsgradienten. Konzentrationsgradienten erzeugen immer eine Strömung in einer Flüssigkeit, das Kügelchen „saugt“ die Flüssigkeit an. Das freigesetzte organische Molekül sorgt zudem für einen Farbwechsel der Kügelchen von weiß nach gelb-orange und zeigt so an, dass die Mikropumpe „angeschaltet“ ist.

„Intelligente“ Polymer-Materialien, die mit einer makroskopischen Funktion auf einen externen Stimulus „antworten“ können, sind Gegenstand intensiver Forschungen. Dass sich das Material an den auslösenden Reiz, das UV-Licht, „erinnert“ und auch weiter pumpt, wenn dieser abgestellt wurde, ist etwas völlig Ungewöhnliches für derartige Materialien. Das neue Material benötigt dabei keinerlei Reagenzien oder „Kraftstoffe“, die über die Flüssigkeit zugeführt werden müssen. Es arbeitet autonom und wandelt dabei chemische Energie in eine mechanische Antwort, den Flüssigkeitsstrom, um. Molekül 1 dient als Signalempfänger, das Fluorid ist der Signalüberträger. Die Kombination all dieser Charakteristika in einem „intelligenten“ Polymermaterial ist nun erstmals gelungen.

Ein solches Material könnte auch so konzipiert werden, dass es nicht auf Licht, sondern auf einen anderen Stimulus reagiert, z.B. auf die Anwesenheit einer bestimmten Substanz. Solche Mikropumpen könnten beispielsweise interessant sein, um den Fluss in einem mikrofluidischen System umzuleiten, sobald diese spezifische Substanz auftritt.

Angewandte Chemie: Presseinfo 33/2013

Autor: Scott T. Phillips, Pennsylvania State University, University Park (USA), http://www.psu.edu/dept/phillipsgroup/scott.html

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201304333

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics